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a b s t r a c t

We consider the problem of controlling a linear system when the state is available with a known time-
varying delay (delayed-state feedback control) or the actuator is affected by a delay. The solution proposed
in this paper consists in partially assigning the spectrum of the closed-loop system to guarantee the
exponential zero-state stability with a prescribed decay rate by means of a finite-dimensional control
law. A non conservative bound on themaximum allowed delay for the prescribed decay rate is presented,
which holds for both cases of constant and time-varying delays. An advantage over recent and similar
approaches is that differentiability or continuity of the delay function is not required. We compare the
performance of our approach, in terms of delay bound and input signal, with another recent approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the birth of automatic control the problem of stabilizing
systemswith delays in the state and/or input variables has been in-
vestigated by a multitude of researchers (see e.g. [1–6] and the ref-
erences therein). For the general case of linear systemswith delays
in the state equations several control approaches have been de-
veloped, including Finite Spectrum Assignment [7,8], Continuous
Pole Placement [9], optimization based pole assignment [10], In-
finite Spectrum Assignment [11], Lyapunov–Krasovskii functional
based methods [12,13], parametric Lyapunov equations [14], and
Matrix Lambert Function [15,16]. Predictor-based approaches for
controlling time-delay systems have long been used for systems
with delayed input, and have received renewed interest in recent
years, even if most approaches only consider the case of constant
delay [17,18]. In [19] a sequence of predictors is used to over-
come the delay limitation in the constant delay case. Predictor-
based state feedback and output feedback controllers have been
proposed in [20,21] for nonlinear systems with time-varying input
delays. State predictors for nonlinear systems with output delays
have been studied in [22,23].

Traditional predictor-based controllers use infinite-dimensional
feedback laws, whose accurate implementation has been widely
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discussed in the literature (see for example [24,5,25]). A feedback
law that only involves finite dimensional static state feedback is
simpler to implement, because it does not require to store the
previous values of the state and it does not need discretization.
An approach of this kind, named Truncated Prediction Feedback,
has been used in [26] for linear systems with constant delays that
are not exponentially unstable and extended in [27] to the case
of time-varying input delays and in [28] to exponentially unstable
systems.

In this paper we use a finite-dimensional method for linear
systems with no restriction on the position of the poles of the
open-loop system,when the state is availablewith a possibly time-
varying delay. This is equivalent to solving a delayed input sta-
bilization problem when the delay function is known in advance
(see [27] for details). It can be seen as an extension to the variable
delay case of the general structure of predictors outlined in [29],
and it improves the recent results cited above in several regard. In
particular, continuity and differentiability of the delay function are
not needed, and the delay bound for a prescribed exponential rate
of the controlled system is the same in the constant and variable
delay case. Sufficient and, under some assumptions, necessary con-
ditions on the delay bound are easy to check. The work here pre-
sented extends the preliminary results in [30], where only the case
of single-input systems has been investigated.

This paper is organized as follows. In Section 2 the control prob-
lem is formally stated, and preliminary definitions are given. In
Section 3 the proposed control law and its features are presented.
Section 4 investigates stability conditions for time-varying delays.
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We compare the features of the proposed method with the recent
approach presented in [28] in Section 5, and a numerical compar-
ison is provided in Section 6.
Notation.Given a real numberα, the symbolC>α (C≥α) denotes the
set of all complex numbers s such that ℜ(s) > α (ℜ(s) ≥ α). SC
denotes the set of all the countable subsets ofC that are symmetric
w.r.t. the real axis (i.e., if U ∈ SC, then z ∈ U ⇒ z∗

∈ U).
σ(A) ∈ SC denotes the spectrum of a real square matrix A. Given a
positive real number δ̄ and an integer n, the symbol Cn

δ̄
denotes

the space of continuous functions that map [−δ̄, 0] in Rn, with
the uniform convergence norm, denoted ∥ · ∥∞. For a set L ∈ SC,
µ(L) = maxλi∈L{ℜ(λi)}. Abbreviations: LTI: Linear Time Invariant;
LTDS: Linear TimeDelay System;DDE: delay-differential equation.

2. Problem statement

Consider a linear system whose state is available with a known
time-delay δt , possibly time-varying in a given interval [0, δ̄]:

ẋ(t) = Ax(t) + Bu(t), t ≥ 0,

ξ(t) = x(t − δt), δt : R+ → [0, δ̄],
(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rp is the input. The pair
(ξ(t), δt) is the measurement available at time t . Under the as-
sumption that the pair (A, B) is controllable, we consider the prob-
lem of constructing a stabilizing feedback control law with delay-
dependent gain matrix:

u(t) = −K(δt) ξ(t), K : [0, δ̄] → Rp×n. (2)

We assume that the control law (2) starts operating at time t = 0.
Thus, the closed-loop system is a time-delay system with the fol-
lowing structure:

ẋ(t) = Ax(t) − BK(δt) x

t − δt


, t ≥ 0,

x(t) = φ(t), t ∈ [−δ̄, 0], δt : R+ → [0, δ̄],
(3)

where φ ∈ Cn
δ̄
is the so called preshape function. Of course, the gain

function K(·) and the delay function δt must be such to ensure that
the solution of (3) exists and is unique. For this reason we assume
K(·) continuous in [0, δ̄] and δt measurable in R+. Note that the
control problem described above is equivalent to the problem of
controlling a linear system when the state is available without de-
lay and the actuator is affected by a known time-varying delay.

We are interested in designing control laws that ensure
exponential decay of the statewith a prescribed rate. The following
definition is useful for our purposes.

Definition 1 (α-exp Stability). For a given real number α > 0, the
system (3) is said to be α-exp stable if there exists γ > 0 such that

∥x(t)∥ ≤ e−αtγ ∥φ∥∞, ∀t ≥ 0, ∀φ ∈ Cn
δ̄
. (4)

Definition 2. Consider the system (1) with a given control law of
the type (2). For a given α > 0 themaximal delay for α-exp stability,
denoted∆α , is the supremum among all δ̄ > 0 such that the closed
loop system (3) isα-exp stable for anymeasurable δt ∈ [0, δ̄]. If the
system (3) is α-exp stable for any δt ∈ [0, ∞), then ∆α = ∞. ∆0
denotes the maximal delay for asymptotic stability.

Definition 2 of ∆α implies that if δ̄ > ∆α , then there exists at
least one delay function δt ∈ [0, δ̄] such that the system (3) is not
α-exp stable.

Note that if the delay-dependent gain K(δt) is properly chosen
the system (3), although time-varying, may admit solutions of the
type eλtv, for some constant λ ∈ C and v ∈ Cn. Thus, we can give
the following:

Definition 3. A normal mode of the LTDS (3), where the gain
function K(·) and the delay function δt ∈ [0, δ̄] are given, is a
solution of (3) of the type x(t) = eλ tv, with λ ∈ C and v ∈

Cn. If such a solution exists, λ is called a modal number of (3).
M


A, −BK(δt)


⊂ C will denote the set of modal numbers of the

system (3).

Of course, the set of modal numbers M

A, −BK(δt)


extends

the concept of spectrum to time-varying systems, and it can be
an empty set if K(·) is not properly chosen. Like the spectrum, if
A, B and K(·) are real and λ is a modal number, then also λ∗ is
a modal number, i.e. M


A, −BK(δt)


∈ SC. For δt = 0 we have

M

A, −BK(0)


= σ


A−BK(0)


, and for constant delay δt = δ > 0,

the setM

A, −BK(δ)


is made of the countably infinite roots of the

characteristic function

νδ(s) =
sIn − A + BK(δ) e−sδ

, (5)

i.e. λ ∈ M

A, −BK(δ)


⇐⇒ νδ(λ) = 0. Let us define σ̄δ =

max{ℜ(λ), λ ∈ M

A, −BK(δ)


}. It is known that σ̄δ exists and

σ̄δ < ∞ (Lemma 1.4.1 in [31]). Moreover, if σ̄δ < 0, then the
system (3) is α-exp stable with α ∈ (0, |σ̄δ|) (Thm. 1.6.2 in [31]).
These results can be summarized in the following Proposition:

Proposition 1. Consider the system (3), with a constant delay δt = δ.
For a given real number α > 0 the system is α-exp stable if νδ(s) ≠ 0
∀s ∈ C≥−α , and only if νδ(s) ≠ 0 ∀s ∈ C>−α .

Control problem formulation: Partial Spectrum Assignment with α-
exp stability.

Let L = {λ1, . . . , λn} ∈ SC denote a set of n real or complex
numbers. The problem of Partial Spectrum Assignment (PSA)
consists in finding a time-dependent feedback gain K : [0, δ̄] →

Rp×n, such that with the feedback law (2) the set L is included in
the set of modal numbers for any delay function δt ∈ [0, δ̄], i.e. L ⊂

M

A, −BK(δt)


,∀δt ∈ [0, δ̄]. The PSA problemwithα-exp stability

(PSAα) requires that, in addition, the system (3) is α-exp stable.
Of course, a necessary condition for having α-exp stability is

that µ(L) ≤ −α. Note that when δt = 0, if the pair (A, B) is
controllable, then for any choice of L ∈ SC, there exists K ∈ Rp×n

such that σ(A − B K) = L.

3. The feedback law

This section summarizes the main results of the paper. For the
sake of clarity, their formal statement and corresponding proof is
postponed to Section 4 or to Appendices A and B as detailed in the
sequel.

Given a set L ∈ SC of n desired eigenvalues for the system
(1), where the pair (A, B) is assumed controllable, consider the
following delay-dependent feedback law

u(t) = −K(δt)ξ(t), with K(δt) = Ke Aδt , (6)

where

A = A − B K , with K ∈ Rp×n
: σ( A) = L. (7)

We will prove in Theorem 2 that the feedback gain (6) solves the
PSA problem for the system (3), i.e. L ⊂ M


A, −BK(δt)


for any

delay function δt . Moreover, Theorem 1 states that for a given
desired decay rate α > 0, such that µ(L) < −α, the feedback gain
(6) achieves α-exp stability for the system (3) for any δt ∈ [0, δ̄] as
long as δ̄ is such that: δ̄

0
∥ Ke AtB∥eαtdt < 1. (8)
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