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A B S T R A C T

Biomarker discovery plays an important role in cancer diagnosis and prognosis assessments. The biomarkers that
could be applied among different cancer types are highly useful. Although many traditional feature selection
algorithms have shown their power on picking discriminative genes, they are incapable of identifying biologically
meaningful biomarkers. Here, on the hypothesis that gene essentiality would be disrupted in cancers, we esti-
mated the gene sets with significant essentiality alteration in six cancer types. We found that different cancer
types would share some common gene essentiality alterations. Then, the variable combination population analysis
(VCPA) algorithm was applied to identify the potential biomarkers from these common genes, which were used to
construct prediction models and exhibited satisfactory classification ability (averaged accuracy: 0.9752) among
six cancer types. Interestingly, these biomarkers would tend to cluster as a subnetwork and be characterized by
high centrality values in the protein–protein interaction network. They were significantly enriched in the cell
cycle and DNA replication pathway which are hallmark signatures of cancers. Several biomarkers have been even
verified by the literature searching, reported having roles in chromosome instability and aberrantly expressed
between cancer/normal samples. An additional comparison analysis between the VCPA and other six feature
selection methods in WEKA suggested biomarkers by VCPA perform superior over those by other methods. These
results suggested that our method is promising in identifying the potential multi-cancer biomarkers.

1. Introduction

Cancer is recognized as a generally complex disease. In the past
years, most researches focused on the cancer that originating in the
same tissue, which was heterogeneous and could be divided into several
subtypes [1–3]. Some common characteristics were also found in
different cancer types, such as the microsatellite instability in colorectal
and endometrial cancers [4,5] and the somatic inactivation of the
BRCA1-BRCA2 pathway in both basal-like breast cancer and serous
ovarian cancers [6]. Recently, a research from The Cancer Genome
Atlas (TCGA) has also indicated that even specific subtypes across
different cancer types can share some common features [7]. Thus, for
the deeper understanding cancer mechanism, it is desired to design
reliable strategies for exploring these commonalities among different
cancer types.

Biomarker discovery for cancer based on the molecular factor, such as
proteins and genes has become a major strategy in biomedical fields [8].
Traditionally machine learning methods were applied to find cancer
biomarkers [9]. Unfortunately, even for the same cancer type few
consentaneous gene sets were reported by different researches [10–12].
The subtle alterations on the driver genes might be amplified on those
downstream effectors, which might vary from different patients. Though
the feature selection methods have shown their power on picking
discriminative genes, the biological significance of these selected genes
was unclear [13]. Some studies [14,15] focused on differentially
expressed genes, while other noted the non-differentially expressed
genes could also play a central role by interacting with other genes [16].
To solve the issue, many groups proposed a more promising strategy
based on some prior biological knowledge, such as the pathway or the
network to reveal the coherent expression patterns [16–19]. However,
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most of them focused on the prognosis and diagnosis characteristics of
biomarkers in an individual cancer. Recently, some attentions have been
focused on exploring multi-cancer biomarkers across different cancers,
due to their potential on the clinical settings and even on the drug target
development [20–24]. Kaczkowski et al. [25] identified a set of
multi-cancer biomarkers recurrently perturbed in cancer samples based
on differential expression profiles. Martinez-Ledesma et al. [26] used a
network-based algorithm method to find multi-cancer biomarkers.

The essential genes are critical for cell viability under certain context,
which might tend to be highly expressed, take part in the crucial pathway
and involve in more protein–protein interactions. These genes may
contribute to exploring targets for cancer therapies [27]. Lately, Jiang
et al. proposed the NEST (Network Essentiality Scoring Tool) to estimate
the gene essentiality in functional genomics experiments [28]. The
essentiality scores are closely correlated with their neighboring genes
expression levels in the biological network. Furthermore, through a
patient survival analysis, they proposed that a gene neighboring
over-expressed ones in the cancer samples is more likely the oncogene
with associated survival risk. Thus, we speculated that the gene essen-
tiality alterations between cancer/normal samples could provide new
clues for discovering potential multi-cancer biomarkers and common
biological mechanisms among cancers.

Here, we attempted to combine the gene essentiality information,
as the prior biological knowledge, with the feature selection algorithm
VCPA to explore the potential multi-cancer biomarkers. VCPA is a
recently proposed method to investigate NIR spectral datasets. It has
been proved as a good variable selection strategy when compared with
several other well-established variable selection methods [29]. We
expected that such combination strategy could produce discriminative
genes between cancer/normal samples shared by different cancer
types.

In our pipeline, firstly, the gene essentiality score alterations were
estimated between cancer and the control samples in the six cancer
types (breast, colorectal, gastric, lung, liver and pancreatic), respec-
tively. >37% overlaps were observed among the most altered genes
(top 500) for each cancer type. The results indicated that these alter-
ations tended to reflect the common characteristics. These common
genes included both common differentially expressed genes among six
cancer types and the non-differentially expressed genes closely con-
nected with the differentially expressed genes. Then, the VCPA algo-
rithm was applied on this gene set for picking out the most informative
ones. VCPA was performed fifty times against each cancer type and the
output gene lists were then combined for the most frequently selected
gene. They were used as the features for a 10-fold cross validation PLS
[30] model training. The gene set with the best performance for all
these six cancer types was regarded as the candidate multi-cancer
biomarkers. Finally, a comparison analysis was carried out between
VCPA and other six feature selection methods fromWEKA. The superior
performance of our candidate biomarkers further validated our method.
Additionally, these candidate biomarkers could be highly supported by
biological pathway analysis, the previously reported multi-cancer bio-
markers, the literature searching and the network analysis. These
results demonstrated that our method would be promising not only to
find the potential multi-cancer biomarkers, but also shed light on
understanding the commonly disturbed biological mechanisms among
different cancer types.

2. Material and methods

2.1. Data source and preprocessing

The gene expression data of six cancer types were collected from
the GEO database (GEO accession numbers in Table 1). The Robust
Multiarray Average (RMA) normalization method contained four
steps: 1) Background correction. 2) Normalization (across arrays). 3)
Probe level intensity calculation. 4) Probe set summarization. We
downloaded the expression matrix for each cancer and then converted
the gene id to symbol names according to their corresponding exper-
iment platform.

2.2. The combination of gene essentiality score and feature selection
method

The workflow was shown in Fig. 1. Firstly, Gene essentiality scores
were estimated by the method proposed by Jiang [28] based on STRING
protein–protein interaction (PPI) network [31]. By speculating that the
gene essentiality score would be alternative under different conditions,
we estimated such alteration for each gene by the subtraction of its
averaged essential scores over the samples in the cancer/control samples.
Then, the 500 most essentiality altered genes for each cancer types were
intersected and got 189 common genes.

Then, variable combination population analysis (VCPA) was applied
to select the informative genes in each cancer types. Referring to the
original paper for the VCPA, we ran the method fifty times for each
cancer type and then merged all the output gene lists for further
informative gene selection. Here, the ACC value wsa taken instead of
the RMSECV (root mean squares error of cross validation) for esti-
mating the performance of a feature set in this classification task.
Additionally, the optimized gene set was determined by ACC values
from the cross-validation for the gene set in each EDF (exponentially
decreasing function) run. For more details about the VCPA algorithm,
refer to [29]. The details about the modified pipeline please see
Supplementary Fig. 1.

Further, we analyzed the classification ability of the genes of different
frequency to classify cancer/control samples. The PLS classification
models by using the genes of frequency greater than 65 to 88 were built
on each cancer datasets. For each PLS model, both the threshold and the
number of latent variables were optimized. The prediction performance
was evaluated by using the accuracy (ACC), the area under the ROC curve
(AUC), specificity (SPE) and sensitivity (SEN).

To validate the superiority of VCPA feature selection algorithm, the
6 feature importance evaluators were applied on the 189 common
genes to select the informative genes in each cancer types, including
ChiSquaredAttributeEval, ReliefFAttributeEval, InfoGainAttributeEval,
GainRatioAttributeEval, OneRAttributeEval, SymmetricalUncertAt-
tributeEval from Waikato Environment for Knowledge Analysis
(WEKA) [32]. We constructed the PLS classification methods by using
the same number of the top ranked feature genes to evaluate the clas-
sification ability for VCPA feature selection algorithm and the 6 feature
importance evaluators from WEKA. The prediction performance was
evaluated by using the accuracy (ACC), the area under the ROC curve
(AUC), specificity (SPE) and sensitivity (SEN).

Table 1
The six cancer datasets used in our analysis.

Dataset Cancer type Abbreviation Dataset type Normalized method Tumor samples Control samples Gene number

GSE5847 breast BRC microarray RMA 48 47 13435
GSE21510 colorectal CRC microarray RMA 124 24 21212
GSE27342 gastric GAC microarray RMA 80 80 17492
GSE19804 lung NSCLC microarray RMA 60 60 21212
GSE77314 liver LIC RNA-seq log2 50 50 29095
GSE28735 pancreatic PDAC microarray RMA 45 45 23306
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