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Population reference limits are inadequate for personalized analyses of medical laboratory results. Reference
change values have been recommended as a valid alternative in assessing individual changes across sequential
measurements. In this paper, we investigate the accuracy (type I error) and power (complement of type II error) of
reference change values under three different statistical modeling scenarios and show that oversimplified hy-
potheses lead to misinterpretation of laboratory results. The power is strongly affected by the statistical modeling
assumptions: it is shown that positive shifts in the individual average health condition are difficult to detect, while
it is much easier to identify negative shifts.

1. Introduction

Medical laboratory results are traditionally compared with normal
reference limits, i.e. ranges of values that are expected for healthy per-
sons. They are typically defined by the lower and upper 5% quantiles of a
reference group, i.e. subjects for which no morbidity is assessed [7].
These population-based reference ranges are mere cut-off values and can
lead to false positives and false negatives. The classification of a normal
measurement does not guarantee that the value is normal for the specific
patient and alternatively an abnormal measurement does not necessarily
imply disease alert, in particular when the value is close to the critical
threshold. The reason is that measurements in individuals are affected by
true condition's shifts, but also by some other inherent causes, such as
pre-analytical, analytical, between- and within-subject biological varia-
tions [5]. Population-based reference ranges do not separate these
sources of variation.

The considerations above have led to the development of alternative
methods for the interpretation of medical laboratory results, in particular
recently with an increased interest in personalized medicine. Modern
methods aim at understanding changes in individuals, rather than
comparing results with respect to population-based references. Reference
change values (RCV) or critical differences are a popular method for the
assessment of laboratory results, introduced by Ref. [6]. Several manu-
scripts can be found in this field, for example [3,9-11]. The approach
defines criteria for normal variation in two sequential measurements,
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which mathematically are often defined as

RCV = +244/2(0} + 07), (@))

with 63 the analytical variability, ¢? the intra-individual variability, and
2z, a quantile from the standard normal distribution. Typical values for z,
are 1.645 for a = 0.05, 1.960 for « = 0.025 or even 2.58 for « = 0.005. A
good review on the subject is given by Ref. [4].

The calculation of RCVs for many different laboratory outcomes is
quite simple since all laboratories know approximately the analytical and
intra-individual variabilities for medical laboratory results from samples
from the healthy population. A possible disadvantage of the RCVsin (1) is
that the analytical variation is assumed to be independent of the health
status, an assumption which might be incorrect, as raised by Refs. [8] and
[1]. To overcome this [8], proposed a modification of the traditional RCV
to an RCV that changes with the level of the quantity it tries to measure,
assuming a constant coefficient of variation. However, the work of [8]
lacks mathematical rigor, does not specify the statistical assumptions,
and does not discuss the consequences of the simplified hypotheses on
the detection of possible shifts in the health status between two
sequential measurements.

In this paper, we give a rigorous formulation of the reference change
values under various statistical hypotheses, and demonstrate that the
result of [8] is a special case of our general framework. We also show that
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the power to detect true health changes is counterintuitive when the
analytical variability depends on the health state. In Section 2 we
introduce the modeling framework and provide a general definition of
the reference change values. We consider three different scenarios, cor-
responding to diverse dependencies of the variances. In Section 3 we
discuss how the model can be generalized to allow for a real
non-physiological change in the health status and study the power of
reference change values in detecting real changes. We end the paper with
a discussion.

2. Reference change values

Let Y; be a measured medical laboratory quantity for subject i =
1,2,...,n at two consecutive moments in time j = 1,2. We will assume,
possibly after a suitable mathematical transformation (e.g. logarithm),
that these laboratory results can be described by an additive structure
such as

Yi=wu+V;+Ej 2
where y; is the true mean of subject i, Vj; is the random intra-subject
variability and Ej; is the random analytical variability. The subject-
specific mean y; should be considered random for population reference
change values, but it can be assumed deterministic when the focus is on
detecting changes within a subject. The random variable Vj; is assumed
normally distributed with zero mean and variance ¢?. Thus

Xyj = pi + Vi, 3

representing the true value (without analytical variation) for subject i at
time point j, follows a normal distribution ./ (i;, 62). The error term Ej is
normally distributed with zero mean and variance rg, conditionally on
Vj. Furthermore, the two measurements are assumed to be distant
enough in time, such that (Vi3,Eiz) can be assumed independent
of (Vll ) Eil )

To include variability that depends on the true health condition, we
will assume that the variances 6?2 and Tl_zj may depend on the true health

values y; and Xj,
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Note that the intra-subject variability may depend on the mean health
state only, but the analytical variation may also be affected by the levels
of Vj. This general formulation implies that the difference Yj; — Y;; is no
longer normally distributed if z; depends on Vj;. The cumulative distri-
bution function of the difference Y;, — Y is

4
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P(Yo—Yy <y) = [E{(D(

where @ is the cumulative distribution of a standard normal variable, and
the expectation is with respect to V;; and V» (see Appendix A.1 for the
derivation). The mean of the difference is zero and the variance is
given by

Var(Ya — Ya) = 2(* (1) + E[7* (4, Vi) ]), (6)
with Vi ~ .#/(0, 6 (;)). Based on this variance and the definitionin (1), a
first approximation for the reference change values becomes

Lo = 220 t) + E[2 (1 V)],

)
U = 202() + B[P (1))

where z, denotes again the upper a-quantile of the standard normal
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distribution. A more precise RCV would be determined by two reference
change values L, and U, such that

P(Yo =Yy <L) =1-P(Yo - Yy <U,) =a, ®
but the boundaries L, and U, may still depend on the unknown param-
eter y; through o(y;) and z(u;, v;j). A possible alternative is to use the first
observation Y;; in the lower and upper bounds, i.e. L,(Yi1) and U, (Yi),
such that

©)]

The inclusion of Y;; in the RCV may help eliminate the parameter y;
and in a way it is used as an estimator of y;. The following cases provide
the boundaries under certain assumptions on o(y;) and z(y;, vy).

P(Yo — Yn < Lo(Ya)) =1 =P(Yo — Yy < Ua(Yir)) = c.

2.1. Case I o(u;) = oo and =(u;,vij) = 7o

This is the traditional setting for computing reference change values.
Under the stated normal distributional and independence assumptions,
the RCVs are directly determined by (1) and (6),

—Z4\/2(03 + 73) and U, = z41/2(0} + 73)-

This case may seem trivial, and in a way it is, but it can include the
cases of distributions other than normal. If for instance the original data
Y; follows a log-normal distribution, it is possible to compute reference
change values for the measurements in the logarithmic scale, i.e.
Y — Yy = log(Y) — log(Yy). These limits can be transformed back to
the limits for the ratio Yi / Y in the original scale. In fact, when intro-
ducing model (2), we have considered the additive normal structure
possibly after some transformations of the original data, and that can
include more general distributions.

Ly = (10)

2.2. Case I o(u;) = csp; and w(p;, Vi) = Cp;

Let ¢; >0 and cp, >0 denote the intra-subject and measurement co-
efficients of variation respectively, expressed as fractions. Since the

variance of the measurement error 72 is still independent of the random

!
term Vj, the difference Yj, — Yy is ;ormally distributed with variance
Var(Yi — Yn) = 2c2u?, where c; = +/c2 + cZ denotes the total coefficient
of variation. Thus the reference change values, without using Y;; in the
computation, would be given by +2,/2c2u2. While the total coefficient
of variation of laboratory results is usually known from experimental
studies, the individual mean y; is unknown. Instead, we propose the
limits L,(Yn) = v2¢,L2Ys and U,(Ya) = v2¢,U%Y;, where L <0 and
Ufj > 0 are constants chosen such that the equalities (9) hold. In this case
LY and U? can be determined in closed-form expression

V2 \J2- 226 — 2,6,
a2z and

LO —
“ 1 -z,
an
o V2 2 ne
A

a-t

with restrictions ¢, < v/2z,! for the lower bound and ¢, <z,! for the
upper bound. Note that the lower bound L? for ¢, = z;! is defined by its
continuity extension, since the limit exists and is finite,
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while the upper bound diverges to infinity when c; approaches z,!. See
Appendix A.2 for the derivation of the bounds (11) and Appendix A.3 for
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