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A B S T R A C T

A new method, robust Pair-wise Log-Ratios (rPLR), is proposed for the identification of biomarkers, distinguishing
between two groups of observations. The method can cope with the size effect problem, since it is based on log-
ratios between the values of all pairs of variables. rPLR makes use of the variance of pairwise log-ratios, computed
for the single groups and for all data jointly. When using a robust estimator of variance (or scale), the method is
highly robust against data outliers. The robustness weights are aggregated and displayed in a diagnostics plot,
which allows to reveal outlying cells in the data matrix.

1. Introduction

“Omics” approaches (e.g. genomics, proteomics, metabolomics) are
important platforms for interpreting and understanding complex bio-
logical systems. Nowadays, the use of different types of hyphenated
techniques such as e.g., LC-MS, UPLC-MS, are standard and there is a
need for methods being capable of dealing with the data coming from this
field. This paper proposes a robust method based on Pair-wise Log-Ratios
(rPLR) for the identification of the key features, which are able to
distinguish between two groups of samples (e.g. patients with and
without a certain disease) [1,2]. In this context, this problem is known as
biomarker identification. Here, we will focus on a situation when the so-
called size effect is present in the data. The term size effect refers to
measured samples which have different sample concentrations. The size
effect is obviously undesirable, and it occurs if the true signal cannot be
directly observed. Instead, the true signal multiplied by a constant is
measured. The constant is in general different for each sample which is
the basic problem with the size effect. A typical example of the size effect
is the analysis of urine samples.

There are several possibilities how to deal with the size effect. A
standard procedure is preprocessing of the data by applying certain
normalizations or transformations. A widely used normalization method

is total sum normalization (TSN), where the values of each sample are
divided by their sum. Thus, after TSN, the values of each sample sum up
to one. However, for the purpose of biomarker identification, TSN is
problematic since it can mask the biomarkers [3].

An alternative is probabilistic quotient normalization (PQN) [4]. Let
us assume an (n � d) data matrix X, with n samples and dmeasurements,
and with the matrix elements xij, for i ¼ 1;…; n and j ¼ 1;…; d. For a
sample xi ¼ ðxi1;…; xidÞ, PQN estimates the scaling constant si as the
median of the ratios of the elements of xi to “reference” values xref,j for
each variable, si ¼ medianðxi1∕xref ;1;…; xid∕xref ;dÞ. The reference values
are the column medians or means of X [4]. The normalized values of the
ith sample are

xPQNi ¼
�
xi1
si
;…;

xid
si

�
;

for i ¼ 1;…; n. PQN assumes that the majority of the variables is not
different between the analyzed groups.

In the paper [3], several normalization and transformation methods
were examined for a subsequent identification of biomarkers. Besides
TSN and PQN, also transformations from compositional data analysis, as
well as pairwise log-ratios were investigated [5]. It turned out that PQN
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was the most preferable normalization method for size effect removal in
the context of biomarker identification. Good results could also be ach-
ieved with the pairwise log-ratio approach, but since the number of
distinct variable pairs is d (d� 1) ∕ 2, this method becomes impracticable
in case of high-dimensional data, but also the results cannot be easily
interpreted.

In principle, the size effect problem can be solved by working with
ratios rather than with the original information. This can be easily shown
by assuming that the true signal information is x ¼ ðx1;…; xdÞ. In pres-
ence of a scaling constant we observe s⋅x ¼ ðs⋅x1;…; s⋅xdÞ. However, the
ratios between any two variables of the true signal, xj ∕xk, carries the
same information as the corresponding ratios of s⋅x, since
ðs⋅xjÞ∕ðs⋅xkÞ ¼ xj∕xk¡. Thus, the relevant information is contained in the
ratios between the variables.

As noted in Ref. [6], ratios are not easy to deal with, because their
variances are non-symmetrical, since varðxj∕xkÞ≠ varðxk∕xjÞ. This was
solved by using logarithms of ratios, so called log-ratios, which meet the
property of symmetry, since varðlnðxj∕xkÞÞ ¼ varðlnðxk∕xjÞÞ. Log-ratios
are used in the field of compositional data analysis [5].

The main goal of this study is to present a new method for biomarker
identification based on robust Pair-wise Log-Ratios: rPLR (Section 2) and
to examine its behavior. The results of rPLR are compared with other
normalization methods. Another focus in this paper is robustness. Robust
statistical methods are often used since they can generally deal with data
where outliers are present, see, for example [7,8]. Since most real-world
measurements – including “omics” data – contain outliers, robust pro-
cedures are preferable. The proposed method is straightforward to
robustify, and thus its robustness properties are examined in simulation
studies in Section 3. Section 4 presents new ways of outlier diagnostics,
which also lead to interesting findings in a real data example in Section 5.
The final Section 6 provides concluding remarks.

2. Method rPLR

Consider an n � d data matrix X, where the observations originate
from two groups. Let Xð1Þ denote the sub-matrix with the n1 observations
in the rows from the first group, and Xð2Þ the corresponding matrix with
n2 observations of the second group, and n1 þ n2 ¼ n. The matrix ele-

ments of XðlÞ are denoted by xðlÞij , for i ¼ 1;…; nl, j ¼ 1;…; d, and l ¼ 1,2.

2.1. Variation matrix

The proposed method builds on the variation matrix T [9,10], with
the elements tjk defined as:

tjk ¼ var
�
ln
�
x1j
x1k

�
; ln
�
x2j
x2k

�
;…; ln

�
xnj
xnk

��
; (1)

where j; k ¼ 1;…; d, and “var” denotes the variance. The elements of the
variation matrix report the variability of the log-ratio of a pair of vari-
ables. The smaller the value of tjk is, the more the log-ratio tends to be a
constant. In this case, the corresponding variables can be considered as
being proportional. The variation matrix T is symmetric (see Section 1),
and the diagonal elements are zero.

Besides the variation matrix T based on all observations jointly, the
individual group variation matrices are considered as well. Let us denote
T(l) as the variation matrix of group l, for l ¼ 1,2, with the elements
defined as

tðlÞjk ¼ var

"
ln

 
xðlÞ1j
xðlÞ1k

!
; ln

 
xðlÞ2j
xðlÞ2k

!
;…; ln

 
xðlÞnlj
xðlÞnlk

!#
; (2)

for j; k ¼ 1;…; d. Thus, the variation matrices of the individual groups

consider only the observations from their own groups.

2.2. Test statistic

For biomarker identification, the following statistic Vj is proposed,

Vj ¼
Xd
k¼1

n1⋅
ffiffiffiffiffiffi
tð1Þjk

q
þ n2⋅

ffiffiffiffiffiffi
tð2Þjk

q
ðn1 þ n2Þ⋅ ffiffiffiffitjkp ; for j ¼ 1;…; d: (3)

If the jth variable is not a biomarker, the jth column (and row) of all
three sources of information T, T(1) and T(2) will have similar structure.
For this reason, each term of the sum in (3) will be approximately around
one for all non-biomarkers k. On the other hand, if the jth variable is a

biomarker, tð1Þjk and tð2Þjk will be different, and tentatively much smaller
than tjk, for all k. The resulting Vj will then be considerably smaller than
for non-biomarkers. So, the smaller the value of the statistic (3) is, the less
similar the groups are with respect to this jth variable.

Note that in Eq. (3), the elements of the variation matrix are weighted
with the number of samples of both groups. In case of equal sample sizes
(balanced setting) it is easy to see that Vj can be simplified to

Vj ¼
Xd
k¼1

ffiffiffiffiffiffi
tð1Þjk

q
þ

ffiffiffiffiffiffi
tð2Þjk

q
2⋅ ffiffiffiffi

tjk
p ; for j ¼ 1;…; d: (4)

Since the distribution of Vj is not known, it is not straightforward to
define a cut-off value which would allow to distinguish between
biomarker and non-biomarker.

For “omics” data, however, one could argue that the vast majority of
variables is independent, with a similar distribution. Since d is usually
big, the central limit theorem would then imply normal distribution, at
least for those Vj referring to non-biomarkers (so, for the vast majority).
Although normality cannot be proven formally, our simulation study
shows that the values Vj follow approximately a normal distribution. The
square root in the statistics 3 and 4 is used in order keep the values of Vj
more symmetric, hence closer to normality.

We consider a normalized version

V*
j ¼ �Vj � V

sV
; for j ¼ 1;…; d; (5)

with the arithmetic mean

V ¼ 1
d

Xd
k¼1

Vk

and the empirical standard deviation

sV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d � 1

Xd
k¼1

�
Vk � V

�2vuut :

Because of the minus sign in (5), now big values of V*
j point are po-

tential biomarkers, which is easier to grasp in a visual presentation of the
outcome. Following the argumentation from above, most values V*

j will
be approximately standard normally distributed, and we will use the
standard normal quantile u0:975 � 1:96 as cut-off for biomarker identi-
fication. In other words, all variables with index j, where j 2 f1;…; dg,
are identified as biomarkers, if their statistic V*

j > u0:975. Note that the

statistic V*
j is based on all bivariate information with the jth variable, and

also the grouping information is considered.
Although this approach using approximate normality was very useful

in our experiments, one could also employ randomization tests (e.g. Refs.
[11,12]) as an alternative. Randomization tests do not assume normality
or any other distribution of the data, but they are computationally much
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