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a b s t r a c t

The gene promoter region controls the transcription of a gene, so finding the gene promoter region is the
most important step in gene regulation. Due to the huge amount and genetic diversity, although many
algorithms have been proposed, the promoter recognition are rather complex with the performance still
limited by low sensitivity and highly false positives. In this paper, we present a novel machine learning
method for predicting promoter. First, the function motifs in different regions of Human promoter se-
quences have been recognized using Gaussian Mixture Model (GMM). The optimum number of GMM is
given by the fuzzy cluster recognition algorithm based on fuzzy likelihood function without prior
knowledge. Then the promoter sequences were mapped into the positional densities of oligonucleotides
high dimension Bayes space. At last, Least Square Support Vector Machine classifier is built with Kernel
Locality Preserving Projection to predict the promoter sequence, which simplifies the Least Square
Support Vector Machine to form the Least Square model. Simulation results show that the performance is
improved compared with other promoter classifiers and the proposed method can predict the unknown
promoters with unknown similar genes in the database, and also the speed of the proposed method is
significantly increased.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Reconstruction of gene regulatory network is a research topic
in bioinformatics study. With the development of DNA sequencing
technology, DNA sequences can be gained and the gene region can
be located easily. However, the promoter prediction is a difficult
step in the reconstruction process. As the experimental ap-
proaches for finding DNA promoter are expensive and laborious,
computational identification of promoter as the research founda-
tion of transcriptional regulation is developing rapidly due to its
high efficiency, wide applications, reliable results and low cost. For
a gene sequence, promoter prediction services generally provide
numerous possible promoter locations, which will causes more
analysis for researchers to judge which one is the true promoter.
Therefore, to develop a promoter prediction algorithm is mean-
ingful for researchers. However, the complex structure and de-
generacy of eukaryotic promoter impose a great challenge on the
prediction of promoter in molecular biological study.

In research algorithms for modeling and prediction, many
kinds of feature may be taken as the inputs of classification to

improve the algorithms’ accuracy [1–3]. Molecular structures, to-
pology structural index, geometrical configuration, and quantum-
chemical descriptors, etc., were taken as the inputs of system
models [4,5]. The DNA duplex stability calculated by the nearest
neighbors was taken into the repertoire of a neural network (NN)
[6]. Local word content, CpG island (GC)-Skew and DNA geometric
were taken as the inputs of support vector machine (SVM) to
predict the two types of promoters [7].The feature selected by FS
process with C4.5 decision tree rules were the inputs of the E. Coli
promoter Fuzzy-AIRS classifier [8]. The pseudo-trinucleotide
compositions extracted by discrete wavelets transform were the
inputs of SVMs for the prediction of promoters [9]. The biological
features and the maximum entropy markov model (MEMM) were
used to recognize the promoter [10]. However, too many DNA
features taken into the inputs of the promoter classifier may cause
important information to submerge into large data and affect the
identification accuracy.

The binding sites of promoter accomplished with transcription
factors regulate the metabolism and transcription of DNA, or
combined with RNA binding protein, influence the modification,
localization, translation and degradation of RNA. Most regulatory
elements interacted with transcription factors are unknown, in-
cluding the compositions and the occurrence positions of the
bases. Different occurrence positions of the binding sites will have
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different biological function significations, and the binding sites
may interact with each other. The combination of upstream and
downstream binding sites may also affect the transcription. Ob-
taining these kinds of knowledge is useful for the gene regulation
mechanism research and promoter recognition. The occurrence
position of binding site and the combination are very important
features of promoter sequence [11,12]. Adjacent and non-adjacent
positions’ motifs all have very important correlations [13–15]. So
analysis and identification of the transcription fact binding site is
an important step for understanding and explaining the behavior
of the entire genome.

A tagged mismatch string kernel used to code DNA sequences
and SVM classifiers was trained on E. coli promoters at �35 db �
�10 db region to predict σ A promoters in B. subtilis and σ66 pro-
moters in Chlamydia trachomatis [16]. As the structure of eu-
karyotic promoter is more complex than that of procaryotic pro-
moter, many useful information of upstream and downstream
around transcription start site (TSS) may be omitted when mod-
eling eukaryotic promoter at �35 db � �10 db and uses the
mismatch tree to find subsequence patterns that occur with mis-
matches. So the important motifs but less frequent cannot be
identified. Paper [17] estimated collections of non-TSS locations
(NTLs), extracted the statistical features around TSS, and dis-
tinguished genomic transcription initiation locations from those
that are not likely to initiate transcription. Most algorithms have
taken the motif PFM (Positional Frequency Matrix) as the DNA
sequence features. This may take low occurrence with important
motifs abandoned.

Due to the above problems, the positional densities of oligo-
nucleotides (short DNA sequence, motif) in the promoter sequence
are taken as the features and mapped into the Bayes space. Kernel
Locality Preserving Projection (KLPP) with Gaussian Mixture
Model (GMM) was used as the kernel of human promoter Least
Square Support Vector Machines (LS-SVM) classifier, which sim-
plifies the LS-SVM with Least square (LS). The algorithm can ex-
tract the promoter feature effectively and gain high accuracy.

2. The positional densities of oligonucleotides

The polymerizes with fewer bases are known as oligonucleo-
tide (TATAAA, 6-length oligonucleotide). Some oligonucleotides at
fixed positions are responsible for regulation and transcription
[18]. The positional densities of oligonucleotides measuring the
probability of oligonucleotides occurrence at various positions
relative to the TSS within promoter sequences were measured by
the positional densities, which is independent to the occurrence
number of the subsequences.

There are two different statistical models: a promoter model, π
and a non-promoter model, π̄ . The statistical models measure for
each oligonucleotide, Ki, and its positional density, π( | )f pi and

π( | ¯ )f pi .
The positional density of oligonucleotides, Ki relative to the TSS

in the promoter is approximated as a finite mixture of Gaussians
[19]
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where p is the random variable representing the position of oc-
currence Ki relative to the TSS. Gi is the optimal numbers of
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The non-promoter model, on the other hand, is defined as
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The probability density functions of promoter and non-pro-
moter are [19]

∫π π( < < | ) = ( | )
( )

p P p f p pPr d
3i

p

p

i1 2
1

2

∫π π( < < | ¯) = ( | ¯)
( )

p P p f p pPr d
4i

p

p

i1 2
1

2

where Pi is the random variable representing the position of oc-
currence of Ki relative to the TSS.

3. Method descriptions

3.1. The positional densities of oligonucleotides GMM modeling
algorithm

At present, the optimum number of GMM is the key problem
that needs solution. The sequences of the occurrence positions
relative to TSS of oligonucleotide are clustered by the fuzzy re-
cognition algorithm based on fuzzy likelihood function [20]
without prior knowledge. The optimum number of components Gi

and all of Gaussian distribution parameters: mean μsi
, variance σs

2
i

are obtained. The mixing proportions αsi are estimated by LS. The
fuzzy recognition algorithm avoids the EM (Expectation Max-
imization) shortcoming of converging to some local maximum and
the results’ high dependence on the initial parameter values
chosen by the EM algorithm. The algorithm is simple with struc-
ture identification and parameter identification accomplished si-
multaneously. The precision of modeling is improved and the
computational time is reduced.

The observations of each oligonucleotide are obtained as, Ki,
~ = [ ]p p p p, , ... ,i i i i

N1 2 i , i¼1, 2,…, 4k, where pi
j is the position of the

jth occurrence of Ki relative to the TSS, and Ni is the total number
of occurrences of Ki in all training sequences.

The first data sample from the oligonucleotide, Ki observation
set is taken as the first cluster center. When the mth data sample
( ) =p m N, 2, 3, ... ,i

m
i is considered, and suppose M clusters exist,
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where R is clustering radius, then the mth data sample is added to
a new cluster center. Al is the fuzzy subset of input domain. The
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m
i
m

l l
2 2

l , and ρl, σl

are mean and variance. At last, LL clusters will be obtained. So the
optimal numbers of GMM components for oligonucleotides Ki is
LL. The mean μsi

, variance σs
2
i
of the cluster center set are calculated

by data samples that belong to fuzzy subset Asi.
The probability position density functions of oligonucleotides

in Eq. (2) can be rewritten into the vector form:
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