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The conventional data-driven soft sensormethods such asmultiwaypartial least squares have been encountering
nonlinear problems in predictions of batch processes, and kernel methods have been used to deal with these
problems. In this work, a new data-driven soft sensor method is proposed by developing a Reduced Dual Kernel
multiway partial least squares algorithm. First, the number of kernel vectors is reduced by the feature vector se-
lectionmethod. Then, by projecting both input data and the output data into two reduced kernel spaces, dual ker-
nel matrices are established. These two matrices can be used to build PLS models. Finally, the predicted data in
the kernel space can be reversely projected onto its original space during online prediction. Comparisons were
made among the proposed method and some pervious algorithms through a numerical example and an
Escherichia coli fermentation batch process.
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1. Introduction

Modern industrial batch processes are important, efficient and high-
value-added, thus, sensors should be added to monitor the whole pro-
cess and predict their product quality. During the operation process,
various useful variables can be measured online by physical sensors
and a set of enormous historical databases can be formed. These data-
bases can be used for soft sensor technologies to estimate some key var-
iables that cannot be easily acquired [1,2]. Without these technologies,
operators may affect the monitoring of the whole process and even
lead to operation delay and faulty judgments, whichmay cause trouble-
some outcomes and system failure. Soft sensor technologies such as par-
tial least squares (PLS) have been successfully applied in industrial
batch processes [3]. However, one assumption of PLS is that the moni-
tored data is linear, which cannot be well satisfied in practice because
of the nonlinearity nature of industrial variables. Rosipal [4] proposed
a new kernel PLS (KPLS) algorithm, which has shown its efficiency in
dealing with the nonlinear problems, however, the traditional KPLS
methods have the dimension disaster problem that hard to process
when historical data is to large, additionally focus only on the kernel
projection of input variables, without considering the output variables.

In this work, a reduced dual multiway kernel partial least squares algo-
rithm is proposed focusing on the nonlinear problems of both input var-
iables and output variables in batch processes, while solving the
dimension problem.

This paper is organized as follows. In Section 2, the preliminaries of
multiway kernel partial least squares and feature vector selection
(FVS) are introduced, including data expanding method as well as the
combination of basic FVS kernel trick and the basic MPLS algorithm.
Section 3 describes the Reduced Dual Kernel MPLS algorithm, including
the reverse projection algorithm for data in a FVS kernel space. The
comparisons of different related algorithms are illustrated through a
numerical example and an experiment in Section 4. Section 5 is the
conclusions.

2. Preliminaries

2.1. Multiway partial least squares

Partial least squares (PLS) [5] is a data-driven mathematical algo-
rithm used to build prediction models [6]. It has been widely used in
many areas such as economics, sociology and chemometrics. The pur-
pose of PLS is to analyze relationships between input data X and output
data Y. The general underlying model of PLS is:

X ¼ TPT þ E ð1Þ
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Y ¼ UQT þ F ð2Þ

where X is an n × mmatrix, Y is an n × p matrix; T and U are n × Rma-
trices that are, scores of X and Y respectively; P andQ arem× R and p× R
loading matrices respectively; superscript T represents the transpose
operator. E and F are residuals. R is the number of latent variables,
which can be determined by cross validation method [7]. Table 1
shows the principle of the NIPLS (Nonlinear Iterative Partial Least
Squares [8]) algorithm [2].

Multiway PLS is an extension of PLS to analyze data taken frombatch
processes. Since the common data format of batch processes is arranged
in terms of batchnumber, variable number and sample number (or time
number), this three-dimensional data array should be unfolded into a
two-dimensional matrix before applying PLS. P. Nomikos and J. F.
MacGregor [9] proposed an expanding method, which expands the
batch data on the batch direction. However, due to the data filling prob-
lems it has, Aguado et al. [10] proposed a new expanding method, AT
approach in short. The principles of this method are described as fol-
lows: (1) Unfold X(I × J × K) to X(I × KJ) as Fig. 1a, (2) Normalize the
data X(I × KJ) to have zeromean and standard deviation, and (3) Trans-
form the data X(I × KJ) to X(IK × J) as shown in Fig. 1b.

2.2. Kernel PLS

Traditional PLS has been successfully applied under the linear as-
sumption, however, generally the actual industrial processes have seri-
ous nonlinear problem. To solve this problem, kernel tricks (or kernel
method) have been implemented in the fields of pattern analysis, pro-
cess monitoring and image processing [11], and have been integrated
with data-driven methods such as Principal Component Analysis and
Partial Least Squares [2,12]. Kernel tricks such as Gaussian Kernel trick
[4] are used to calculate some specific distance between different data
and project the distance information into a high dimensional space to
reduce data's nonlinear property. After the application of kernel tricks,
previous data-driven methods can be then used.

For the application of kernel tricks, an appropriate projection func-
tion f should be constructed to project vector x into a high dimensional
space:

f : x∈Rn⟼ f xð Þ∈F⊆RN ð3Þ

where Rn is an n-dimensional real space, and RN is an N-dimensional
real space. The kernel function calculates the inner product in the high
dimensional space F, as shown in Eq. (4).

k x; zð Þ ¼ f xð Þ; f zð Þh i ð4Þ

where x, z denote different vectors with the same element number.

In this paper, the Gaussian kernel function (or Radial Basis Function
in other words) [13–18] is used as one step of the data pre-processing:

k x; zð Þ ¼ exp
− x−zk k2

2σ2

� �
ð5Þ

where σ is a kernel parameter.
In the conventional KPLSmethod, the input variablematrixXn can be

replaced by matrix Kn:

Kn ¼
k x1; x1ð Þ ⋯ k x1; xnð Þ

⋮ ⋱ ⋮
k xn; x1ð Þ ⋯ k xn; xnð Þ

2
4

3
5 ð6Þ

2.3. Feature vector selection method for kernel tricks

As can be seen from Eq. (6), conventional kernel trick needs to com-
pute the inner product among all vectors, and result in a matrix with
size of N × N, thus dimension disaster is inevitable when measurement
data contain enormous samples. Meanwhile, data projected into a high
dimensional space is in general mapped to some submanifold [19],
therefore it is better to extract the data from these submanifold feature
spaces. Baudat et al. [20] claimed that data matrix in a kernel space is
not of full rank, some of the kernel vectors can be represented by
other kernel vectors. They proposed an algorithm called feature vector
selection (FVS) to extract these vectors from the feature space and re-
duce the size of kernel matrix. The principle of FVS can be briefly de-
scribed as follows, for a kernel matrix as shown in Eq. (7):

Ki ¼ Ki−1 ki−1;i
ki;i−1 ki;i

� �
ð7Þ

where Ki denotes the kernel matrix of Xi (i b n), ki-1,i and ki,i-1 are a col-
umn vector and a row vector with i-1 elements respectively. When the
rank of Ki is equal to i-1, we can say that the additional part of Ki, in com-
parisonwith Ki-1, can be linearly described by Ki-1. Eq. (8) can be used to
justify whether the kernel matrix Ki is of full rank or not.

δi ¼ 1−
kT
i−1;1K

−1
i−1ki−1;i

ki;i
ð8Þ

Theoretically, δi should be equal to 0 in order to make Ki a singular
matrix, however, the real data collected from actual process is with
noise generally. As a result δi could hardly be zero. So the threshold of
δi need to be a non-zero positive number ε.

After acquiring matrix Xn = [x1, x2, …, xn]T that expanded and nor-
malized from the original three-dimensional data array, the algorithm
used in this paper can be briefly described in Table 2 (details can be re-
ferred to [18]). Matrix S includes vectors selected from X while kernel
matrix Kspan can be calculated by equation K(X,S)=〈f(X), f(S)〉. We can
use Kspan to replace the original kernel matrix K(X,X).

3. Reduced Dual Kernel MPLS algorithm

3.1. Principles of Reduced Dual Kernel MPLS algorithm

The MKPLS algorithm has shown great advantages on solving the
nonlinear problem [6,14,15], but its basic principles have not changed
a lot: (1) preprocess matrix X and Y, (2) project input data X into kernel
matrix K, then (3) use K and output data Y to form a PLS model (as
shown in Fig. 2b). These methods can handle the nonlinear problem
of input data X that the traditional PLS (Fig. 2a) cannot, but the output
data Y still remains unchanged, but the fact is that the output data Y
can also be transferred into kernel matrix KY in the high dimensional
space through the kernel trick which can be then used to construct
the PLS model (as Fig. 2c) with kernel matrix KX (data X in kernel

Table 1
NIPLS algorithm.

(1) Set i=1,E0=X ,F0=Y ,u1=y1; where i is the index of the latent variable,
y1 is the first target variable;

(2) wi=Ei−1
T ui/ui

Tui;
(3) ti=Ei−1wi/∥Ei−1wi∥ ;
(4) qi=Fi−1

T ti/∥Fi−1
T ti∥ ;

(5) ui=Fi−1qi, go to step (2) until convergence is reached;
(6) pi=Ei−1

T ti;
(7) bi=ui

Tti;
(8) Ei=Ei−1− tipiT;
(9) Fi=Fi−1−uiqiT;
(10) i = i + 1;
(11) Repeat from step (2) until all of the latent variables are calculated.
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