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A B S T R A C T

This paper considers the use of the Tensor Singular Value decomposition approximation as a basis for visual-
ising three-way data, particularly in the spirit of the PCA biplot, and proposes a plot based on the orthogonal
rank decomposition of a three-way array. It is shown how the decomposition can be used to partition terms
as a product of one mode and a combination of the remaining two modes. This allows for a two dimensional
representation with triplot axes, similar to PCA biplots.

© 2016 Published by Elsevier B.V.

1. Introduction

Graphical displays of data can often provide a rudimentary under-
standing of the relationships inherent in the data set under inves-
tigation. In the context of two-way data, one such graphical tool is
the PCA biplot which [13, p. 492] eloquently describes as “allow[ing]
for the analysis of two-way interaction in a table of n objects and
p variables such that systematic patterns between rows, between
columns and between columns and rows can readily be assessed and
evaluated”. Gower and Hand [10] provide a comprehensive discus-
sion on the theoretical foundations of the construction of this plot.
It is relevant that the construction relies on determining the optimal
low rank approximation of the data table as well as on the con-
cept of orthogonality. This paper sets out to define a visualisation of
three-way data that, in the spirit of Kroonenberg’s definition, could
be described as affording the means to analyse three-way interac-
tion such that the systematic patterns between objects, between
variables, between conditions, between any combination of these
as well as between all three of these collectively can be readily
assessed.

This paper provides the theoretical framework for the construc-
tion and interpretation of the proposed plot. These ideas are based on
those put forward by Araújo [3] but improves on his proposition in
three ways. Firstly, it allows the plot to be applied more generally as
an exploratory plot than the PARAFAC decomposition, which is what
Araújo used, by alleviating the potential problem of degeneracy.
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Secondly, the interpretation of the proposed plot is closely aligned
with that of the PCA biplot, making it more intuitive. Finally, where
the original plot as conceived by Araújo did not allow for the reading
off of data values, this paper includes linear axes fitted with markers
that facilitate this, thus enhancing the original plot. Araújo [3] chris-
tened this the triplot while Albers and Gower [1] is, to the best of our
knowledge, the first reference in English for this type of plot. Analo-
gous to the term biplot for representing both the rows and columns
of a data matrix, here triplot refers to the simultaneous representa-
tion of the three modes of a three-way data array. This is however
not the only use of the term ‘triplot’ as it is also used for a triangle-
shaped plot (see for example [15]) and Gardner-Lubbe [8] uses the
term for a plot simultaneously representing the samples, variables
and classes in a multiclass classification problem. For ease of refer-
ence this name will be used henceforth to refer to the plot discussed
in the paper.

The work in this paper lies very closely with the work done by
Gower and Albers [1,2]; it is distinct in that the approaches adopted
in constructing the visualisation technique are rather different. This
paper relies on a geometric approach, whilst Gower and Albers
adopted a linear algebraic approach. Reading this paper together
with Albers and Gower will provide much additional insight with
respect to visualising three-way arrays.

Finally, the methodology is applied to a dataset related to a study
of blue crabs shell disease [9] and the inferences made from the plot
are compared to their conclusions. This includes a comparison of
the proposed plot to the popularly used joint plot in order to show
that it yields similar results and a discussion as to why the triplot
can arguably be considered slightly more intuitive than the joint
plot.
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2. Theoretical framework

The biplot, as introduced by Gabriel [7], depends on the factorisa-
tion of a rank R two-way array matrix X ∈ Rd1×d2 as X = GH

′
where

G ∈ Rd1×R and H ∈ Rd1×R. To construct a biplot in r dimensions, for
R > r, the best rank r approximation of X, X̂, is obtained from the
Eckart and Young [17] theorem, using the singular value decompo-
sition of the matrix X. The factorisation of the rank r matrix can be
written as

X̂ =
r∑

i=1

srgi ◦ hi, (1)

where gi is the ith column of G and hi is the ith column of H and ◦ is
the outerproduct operator. For practical purposes, r = 2 or r = 3 is
used to construct the biplot in two or three dimensions respectively.

In the context of three-way tensors defined as X := �xijk� ∈
Rd1×d2×d3 , the concept of the rank of a tensor is more complex
than what is encountered in the context of matrices (see for
example [12]). For the purposes of this paper, a detailed exposition
on tensor rank is not necessary; it suffices to provide a brief descrip-
tion of a tensor decomposition that will allow the construction of
a triplot in the spirit of the biplot as envisaged by Gabriel [7]. To
this end, the definition of the Tensor Singular Value decomposition
is defined as specified in [4].

Definition 2.1. A tensor X ∈ Rd1×d2×d3 admits a tensor SVD if it can
be written in the form

X =
R∑

r=1

sru(1)
r ◦ u(2)

r ◦ u(3)
r , (2)

where s1 ≥ s2 ≥ . . . ≥ sR > 0 and < u(n)
j , u(n)

k > = dij for n =

1, 2, 3. dij is the Kronecker delta, s r
′s are the singular values and u(n)

r
for r = 1, 2, . . . , R are the n-mode singular vectors.

An equivalent representation, taken from Chen and Saad, is
given by

X = D×1U(1)×2U(2)×3U(3), (3)

where D ∈ RR×R×R is the diagonal core tensor with Dii...i = si, ×i the
matrix tensor multiplication operator as defined in [5] and

U(n) =
(

u(n)
1 , u(n)

2 , . . . , u(n)
R

)
∈ Rdn×R, (4)

are orthogonal matrices for n = 1, 2, 3. A tensor X will admit a
TSVD if and only if the core tensor arising from a Higher Order
Singular Value Decomposition (HOSVD) is diagonalisable but in gen-
eral this cannot be done [4]. The TSVD definition refers to a tensor of
orthogonal rank R being expressed as in Eq. (3).

The importance of this assertion is that a TSVD might not exist to
fully decompose a tensor into the sum of R outerproducts where R is
the orthogonal rank of the tensor but this does not make a statement
regarding the ability to use TSVD to find a lower rank approximation
to the tensor X . Here the problem of interest is to minimise

‖ X −
r∑

i=1

siu
(1)
i ◦ u(2)

i ◦ u(3)
i ‖2, (5)

subject to the constraint that < u(n)
j , u(n)

k >= dij for n = 1, 2, 3. It has
already been established that this problem might not have a solu-
tion if r = R, the rank of the tensor X . The contribution of Chen and
Saad [4] was to show that the minimisation problem will always have
a solution for any X ∈ Rd1×d2×d3 and any r ≤ min{d1, d2, . . . , dn}. This
decomposition technique does not suffer from the problem of degen-
eracy that can show itself when PARAFAC decompositions are used.
For a particular low rank r, a degenerate solution implies that a low
rank-r approximation of the tensor does not exist [6]. Although there
is a restriction on r in Chen and Saad; the triplot is two dimensional,
making this restriction negligible. Ultimately, using this decompo-
sition technique makes the triplot more generally applicable as an
exploratory plot. The low orthogonal rank decomposition is thus the
conception of rank that is the basis for constructing the triplot.

2.1. Constructing and interpreting the triplot

2.1.1. Construction of triplot
Note that since the triplot is two-dimensional, it implies that r =

2. The TSVD decomposition can be represented as

x̂ijk =
2∑

n=1

snu(1)
in u(2)

jn u(3)
kn . (6)

As an example, consider the expression for x̂111 which is given by

x̂111 = (s1u(1)
11 )u(2)

11 u(3)
11 + (s2u(1)

12 )u(2)
12 u(3)

12

= y1y2y3 + z1z2z3.

(7)

For the purpose of explaining the construction process, the s i

terms have been grouped with the elements of the first matrix U (1).
With the aid of Fig. 1 it is possible to interpret this representa-

tion in a graphical sense. S1 represents the first row of the matrix
U (1) scaled by the singular values plotted relative to Cartesian axes,
so labeled because the first mode often refers to subjects. V1 and T1

represent the rows of U (2) and U (3) plotted relative to Cartesian axes,
labeled as they are due to the fact that variables and time often com-
prise the second and third modes respectively. V1T1 is the result of
taking the product of corresponding elements of the vectors OV1 and
OT1. Consider a somewhat different representation of each of the
elements comprising the expansion in Eq. (7).

y1 = OS1 cos(b1 + h1) z1 = OS1 sin(b1 + h1) (8)

y2 = OV1 cos(a1 + a2) z2 = OV1 sin(a1 + a2) (9)

y3 = OT1 cos(a1) z3 = OT1 cos(a1) (10)

y2y3 = c1 = OV1T1 cos(h1) z2z3 = d1 = OV1T1 sin(h1).

(11)

With this notation Eq. (7) can be written as

x̂111 = y1c1 + z1d1

= OS1 cos(b1 + h1)OV1T1 cos(h1) + OS1 sin(b1 + h1)OV1T1 sin(h1))

= OS1OV1T1 cos(b1 + h1 − h1)

= OS1OV1T1 cos(b1)

= OPS1 OV1T1,

(12)

Please cite this article as: D. Williams, S. Gardner-Lubbe, Visualising three-way arrays, Chemometrics and Intelligent Laboratory Systems
(2016), http://dx.doi.org/10.1016/j.chemolab.2016.08.003

http://dx.doi.org/10.1016/j.chemolab.2016.08.003


Download	English	Version:

https://daneshyari.com/en/article/7562620

Download	Persian	Version:

https://daneshyari.com/article/7562620

Daneshyari.com

https://daneshyari.com/en/article/7562620
https://daneshyari.com/article/7562620
https://daneshyari.com/

