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A B S T R A C T

The integration of multiblock high throughput data from multiple sources is one of the major challenges
in several disciplines including metabolomics, computational biology, genomics, and clinical psychology.
A main challenge in this line of research is to obtain interpretable results 1) that give an insight into the
common and distinctive sources of variations associated to the multiple and heterogeneous data blocks and
2) that facilitate the identification of relevant variables. We present a novel variable selection method for
performing data integration, providing easily interpretable results, and recovering underlying data structure
such as common and distinctive components. The flexibility and applicability of this method are showcased
via numerical simulations and an application to metabolomics data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Bigdatafrommultiplesourcesarefrequentlyseeninmetabolomics,
biology, genomics, and clinical psychology. To obtain a more com-
plete picture about the object of interest (e.g. genes and persons),
datasets from several sources are often integrated. Hence, joint anal-
ysis of such multi-source data has become increasingly popular in
recentyears.Forexample,Acaretal.[1]proposedastructure-revealing
data fusion model for analyzing heterogeneous datasets with miss-
ing values and revealing shared and unshared components, and used
the model to investigate measures obtained from mixtures analyzed
by liquid chromatography-mass spectrometry and nuclear magnetic
resonance.

A promising class of methods for analyzing data blocks are
simultaneous component methods that have received attention
in biomedical research [2], genomics [3,4], bioinformatics [5–8],
cancer research [9], and psychology [10] in recent years. How-
ever, one drawback of simultaneous component integration meth-
ods is their low interpretability [11]: The simultaneous component
representations are based on the contributions of all the variables,
but it may well be the case that only a few variables play an impor-
tant role in the integrated data, whereas the rest can be safely treated
as trivial variables. Hence, a data-integration method that generates
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sparse component loadings can be very helpful. To this end, Van
Deun et al. proposed a sparse simultaneous component method [11],
a flexible framework that incorporates regularization penalties to
induce sparse results, thereby greatly improving the interpretability.
Similar ideas have been proposed in [1] and [2].

A challenge, however, to the sparse simultaneous component
method is how to reveal the structure of integrated data. Specifi-
cally, researchers may want to know whether each data block has its
unique data structure or whether there exists a common structure
shared by several (or all) data blocks. Revealing the data structure
is important because it helps identify which (biological, psycho-
logical etc.) processes govern all the sources and which govern a
particular data source. To give an example, research on obesity and
its genetic and environmental causes may involve joint analysis on
survey, dietary, biomarker and genetic data. Finding common pro-
cesses that are jointly governed by genes and environmental factors
may be of great importance, but such subtle common processes are
very difficult to identify because the major dominating variations
in the integrated data are most likely to be the biological infor-
mation with the general biological functions playing a role therein
(see. e.g. [12]). In other situations, common processes are easy
to identify, but distinctive ones are not. For example, personality
research in cross-cultural psychology often sees cases where the
dominating variations in data are those universal personality types
shared cross all cultures studied, whereas it is rather difficult (though
of substantial interest) to identify unique variations that belong
to a certain culture (see e.g. [13]). Hence, statistical methods that
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can identify common and distinctive processes are greatly in need,
yet existing methods such as the sparse simultaneous component
method [11] do not provide adequate solutions.

Simultaneous component methods are a promising tool for the
analysis of multiblock and multiset large data (in the number of
variables). Yet, to improve interpretability both variable selection
and accounting for common and distinctive sources of variations
are needed. In this paper, we introduce a novel variable selection
method for simultaneous component data integration. We will show
that this method is suitable for revealing complex multi-group struc-
tures where, for example, there is a (sparse) common component
shared by all the datasets, and several distinctive components that
belong to particular datasets. This paper is organized as follows.
After briefly introducing sparse simultaneous component methods,
we present our variable selection method, which is followed by a
series of numerical simulations. Afterwards, we showcase an appli-
cation of the proposed method to metabolomics data. Discussions
and conclusions are offered in the end.

2. Methods

In this section, we first briefly review the model for sparse simul-
taneous component analysis, the objective function of which is not
suitable for identifying common and distinctive processes. After-
wards, we present our novel variable selection method that can be
easily adjusted for finding common and distinctive processes. In the
last part of this section, we introduce a resampling-based stabil-
ity selection method to be incorporated into our variable selection
method.

2.1. Sparse simultaneous component data integration

As an extension of principal component analysis (PCA), simul-
taneous component analysis (SCA) is applied to situations where
multiple data blocks with the same persons or the same variables are
to be integrated [11]. Let Xk denote a Ik × Jk matrix representing the
kth data block (k = 1, · · · , K) with information (e.g. scores) of Ik per-
sons on Jk variables. Principal component analysis then decomposes
Xk into

Xk = TkPT
k + Ek, (1)

where Tk with size Ik × R denotes the component scores for R com-
ponents, where Pk with size Jk × R is referred to as the component
loadings, and where Ek denotes the residuals [11,14]. (The super-
script T denotes the transpose of a matrix.) Furthermore, certain
constraints, such as TT

k Tk = I and a principal axis orientation, are also
needed to identify the solution.

PCA can be interpreted as a least squares minimization problem

(
T̂k, P̂k

)
= arg min

Tk ,Pk

∥∥∥Xk − TkPT
k

∥∥∥2

2
(2)

with respect to Tk and Pk. To improve the interpretability of the
results of PCA, the Lasso penalty ‖Pk‖1 =

∑
jk ,r

∣∣pjkr
∣∣[15] is imposed

on Pk to induce sparse loadings (for a detailed discussion, see [11,16]),
and thus the model becomes

(
T̂k, P̂k

)
= arg min

Tk ,Pk

∥∥∥Xk − TkPT
k

∥∥∥2

2
+ kL ‖ Pk‖1, (kL ≥ 0), (3)

where kL is the tuning parameter for the Lasso penalty. This penalty
has the property to shrink the loadings, some (or many for large
kL

′s) exactly to zero.

Building upon the sparse PCA and simultaneous component
methods (for a review, see [7]), Van Deun et al.[11] presented a
flexible framework for integrating multiblock data where a few
penalties were introduced, thereby greatly improving the inter-
pretability of the integrated data. The sparse simultaneous compo-
nent method solves the following penalized least squares minimiza-
tion problem

(
T̂, P̂k

)
= arg min

T,Pk

∥∥∥XC − TPT
C

∥∥∥2

2
+ kL ‖ PC‖1

+
∑
k,r

(
kG

√
Jk ‖ Pk‖2 + kE ‖ Pk‖1,2

)
(4)

subject to

TT T = I; kL,kE,kG ≥ 0.

The flexible framework Eq. (4) decomposes the concatenated data
XC consisting of K data blocks Xk (with respect to the same set
of I persons) into component scores T and concatenated compo-
nent loadings PC consisting of K blocks of component loadings Pk.
Note that T is the same for each of the data blocks. Besides a Lasso
penalty on the concatenated component loadings PC, the flexible
framework also incorporates an Elitist Lasso penalty

∑
k,r(‖Pk‖1,2) =∑

k,r

(∑
jk

∣∣pjkr
∣∣)2

[17,18] and a Group Lasso penalty
∑

k,r

√
Jk ‖Pk‖2 =∑

k,r

√
Jk
∑

jk

(
p2

jkr

)
[19]. The Elitist Lasso penalty and the Group Lasso

penalty become very useful when variable selection in PC pertains
to groups (i.e. data blocks): The Elitist Lasso penalty specializes in
selecting variables within groups. For example, in regression anal-
ysis, the Elitist Lasso penalty retains the highest coefficients within
each group. The Group Lasso penalty on the other hand performs
variable selection on the group level; that is, all the variables in
the data blocks with the highest sum of squared coefficients are
selected.

2.2. A novel variable selection method for sparse simultaneous
component based data integration

First note that it is necessary to rewrite the minimization problem
(Eq. (4)) in its vectorization form as follows:

(
T̂, P̂k

)
= arg min

T,Pk

∥∥∥XC − TPT
C

∥∥∥2

2
+ kL‖PC‖1

+
∑
k,r

(
kG

√
Jk‖Pk‖2 + kE‖Pk‖1,2

)

= arg min
T,Pk

∥∥∥Vec(XC) − (I ⊗ T)Vec
(

PT
C

)∥∥∥2

2
+ kL

∥∥∥Vec
(

PT
C

)∥∥∥
1

+
∑
k,r

(
kG

√
Jk

∥∥∥Vec
(

PT
k

)∥∥∥
2

+ kE

∥∥∥Vec
(

PT
k

)∥∥∥
1,2

)
, (5)

subject to

TT T = I; kL,kE,kG ≥ 0.

This minimization problem will be solved by alternatingly updat-
ing T and Pk. Because the problem of minimizing Eq. (5) given a fixed
Pk is a problem with known solution (see [20]), we shall focus on
explaining how to update Pk.

The minimization problem (Eq. (5)), given T is fixed, is not a
standard minimization problem due to the penalties, and therefore
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