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a b s t r a c t

In the presence of correlated and/or heteroscedastic noise, i.e., for measurement noise which is not in-
dependent and identically distributed (iid), new expressions are required to estimate multi-way cali-
bration figures of merit. They are derived in the present report, with focus towards a useful multi-way
approach based on unfolded partial least-squares with residual multi-linearization. The expressions al-
low one to estimate figures of merit under a generalized noise propagation scenario, and to gain insight
into the various uncertainty sources contributing to the overall prediction error and limit of detection.
Through the study of both simulated and experimental data, it is shown that significant differences exist
between the values estimated assuming an iid noise structure and when the underlying structure de-
viates from this classical paradigm.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Multi-way calibration is becoming increasingly popular in the
chemical analysis of complex samples, particularly for its ability to
cope with uncalibrated interferents [1–3]. This leads to con-
siderably simpler calibration strategies, thanks to the achievement
of the second-order advantage, which is potentially inherent to
data arrays with at least two different instrumental modes [1]. In
the framework of multi-way calibration, research on analytical
figures of merit (AFOMs) has made considerable progress in recent
years, although the usual assumption has been to consider in-
strumental errors as independently and identically distributed
(iid) [4–8].

Multiple causes may lead to instrumental noise structures
which deviate from the simple iid condition [9]. Multi-way AFOM
expressions which are valid under this general scenario are re-
quired, for a variety of reasons: (1) method development and
optimization, (2) comparison of different methodologies, (3) un-
certainty reporting along with prediction results, and (4) assess-
ment of detection capabilities. Recently, equations were developed
for the prediction uncertainty of first-order multivariate calibra-
tion in the presence of generalized noise structures [10], extending
previous developments in the field [11].

In the context of multi-way calibration, an approximation has
been proposed based on the mean square calibration error which
can be achieved by processing second-order data [12]. This latter
approach assumes that the measurement noise structure is the
same both in calibration and prediction. Moreover, it only con-
siders the overall effect of the noise, with no insight into each of
the individual error sources. The present report intends to fill the
gap between first-order and multi-way calibration AFOMs for
generalized noise structures.

We should first consider the sensitivity, a relevant figure of
merit affecting all calibration scenarios [13–15]. Recently, a general
sensitivity expression has been discussed, which is able to cover
from univariate to multi-way data processing [4]. The strategy to
derive the general equation involved the study of the propagation
of noise from a test sample to the prediction of the analyte con-
centration. A very small amount of iid noise was added to a test
sample signal, to probe the relative magnitude of the propagation,
regardless of the experimental noise structure [4]. Thus, it is rea-
sonable to assume that the sensitivity definition will not change,
even when the true noise structure is not iid.

On the other hand, other relevant figures of merit such as
prediction uncertainty and detection capabilities may be sig-
nificantly affected by the noise structure. These parameters should
always be reported when developing new analytical protocols
[11,16,17]. It might be argued that replicate sample analysis could
in principle provide an experimental estimation of these figures.
However, it is important to be able to dissect the overall
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uncertainty into the different contributing error sources. This
could allow one to identify the influence of specific errors, to limit
and/or mitigate them, leading to improved analytical results.

In this work, a general scheme is presented to estimate sample
dependent uncertainties in a multi-way calibration model based
on unfolded partial least-squares with residual multi-linearization
(U-PLS/RML). The latter has been widely employed in recent years
to process multi-way data achieving the important second-order
advantage [18]. To illustrate the usefulness of the proposed ex-
pressions, we describe different situations which depend on the
structure of the measurement noise. The adequacy of the results
was demonstrated through extensive noise addition simulations,
and also by application to experimental data sets.

It is hoped that the present report will stimulate further re-
search concerning the estimation of multi-way analytical figures of
merit for generalized noise structures when other data processing
algorithms are applied, such as multi-linear decomposition [19] or
multivariate curve resolution [20].

2. Theory

2.1. U-PLS/RML

The theory of U-PLS/RML is well-known [18]. In the case of
three-way/second-order calibration, data matrices are measured
for each experimental sample. The (unfolded) test sample signal x
is modeled as the sum of two contributions: (1) the portion of the
test signal modeled by the calibration, and (2) the signal from the
interferents modeled by RML:
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where P is the matrix of U-PLS calibration loadings, t is the test
sample scores, the vectors bint,n and cint,n are the profiles in each
data mode for the nth interferent, Nint is the number of inter-
ferents, ⊗ indicates the Kronecker product, and e is a vector of
model errors (see Table 1 for details on vector and matrix sizes). In
Eq. (1), the product P tT represents the part of x which can be

modeled by the calibration parameters, while the summation of
Kronecker products represents the contribution from the
interferents.

The aim of the RML procedure is to find the score vector t
minimizing the norm of the vector e in Eq. (1), rendering at the
same time the interferent profiles in each data mode. Once t is
found by RML, prediction of the analyte concentration ŷ proceeds
through:

^ = = ( )+y t v t T y 2cal

where v is the vector of latent regression coefficients provided by
the U-PLS calibration model, T is the matrix of calibration scores,
ycal the vector of analyte calibration concentrations and ‘þ ’ in-
dicates the pseudo-inverse operation. An analogous expression to
Eq. (1) holds for higher-order data [18].

2.2. Prediction uncertainty

A general expression for prediction uncertainty using U-PLS/
RML is derived in this section. It can be easily extended for further
multi-way data systems. In the most general scenario, noise affects
both calibration and test sample signals and calibration con-
centrations, and hence differentiation of Eq. (1) leads to:
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The last term of Eq. (3) can be shown to be the product of a
matrix Zint representing the space spanned by the interferents and
a column vector containing the differentials dcint,n and dbint,n (see
Appendix), i.e.:
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where the usual MATLAB notation ‘;’ is employed to append col-
umn vectors on top of each other [21], and Zint is given by:
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where the ‘,’ appends matrices adjacent to each other, and IJ and IK
are J� J and K�K identity matrices respectively. This suggest that
the last term in Eq. (4) can be removed by multiplication by a
suitable projection matrix, orthogonal to Zint:
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where PZint¼(IJK–Zint Zint
þ) and IJK is an identity matrix of size

JK� JK. From Eq. (6):
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Since PT¼Tþ X, where X is the matrix of calibration (unfolded)
signals, differentiation of P and replacement in Eq. (7) gives:
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We now focus attention on the expression for the differential
change in predicted concentration, starting from Eq. (2):
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And inserting in the latter equation dt from Eq. (8):
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In the latter equation, two important changes can be made:
(1) the factor PZint (PZint P)þT can be condensed as Peff

þT, where

Table 1
Parameter symbols, size and details regarding the variables discussed in the pre-
sent report.

Parameter Size Details

βeff JK�1 Effective U-PLS regression coefficients
bint,n J�1 Profile for interferent in the first mode
cint,n K�1 Profile for interferent in the second mode
e JK�1 Vector of second order RML residuals
h 1� I Sample leverage vector
IJ J� J Identity matrix
IK K�K Identity matrix
IJK JK� JK Identity matrix
P JK�A U-PLS loading matrix
Peff JK�A Effective U-PLS loading matrix
PZint JK� JK Orthogonal projection matrix to Zint
t 1�A Sample score vector
T I�A Calibration score matrix
X I� JK Calibration data matrix
x JK�1 Test data vector (after unfolding the data matrix)
v A�1 Vector of latent U-PLS regression coefficients
ycal I�1 Calibration concentrations
Zint JK�Nint(JþK) Matrix spanning the interferent space
Σ2
x JK� JK Error covariance matrix for test sample

Σ2
X JK� JK Error covariance matrix for calibration samples

Σ2
X,i JK� JK Error covariance matrix for calibration sample i

Σ2
X,eff JK� JK Effective error covariance matrix for calibration
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