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The objective of self modeling curve resolution (SMCR) methods is to decompose a second-order bilinear data
matrix into a range of chemically meaningful matrices without any knowledge about the chemical or physical
model describing the considered system. In addition, SMCR methods are efficient approaches to deeply investi-
gate data structures by finding not only one of the solutions but all possible ones.
Multi-set data analysis can be a powerful tool to decrease the range of feasible solutions in the absence of
appropriate conditions for unique resolution. Using SMCR methods, we have investigated the impact of multi-
set data analysis on the accuracy of soft modeling results. Interestingly, the feasible regions of individual and
simultaneous analysis are compared in a common abstract space. It is demonstrated how such global analysis
can result in the reduction of rotational ambiguity in soft modeling analysis. Moreover, as a systematic study,
different factors are considered in order to discover the advantages and limitations of multi-set data analysis
and lead to a proper design for more accurate results.
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1. Introduction

SMCR methods [1,2] are applied to multivariate data sets that have
difficulties in their analysis. Therefore, these methods have an impor-
tant role in chemistry, especially in the area of analytical chemistry.
SMCR methods reconstruct data sets with limited information about
the studied system and attempt to find all possible solutions of a
mixture, fulfilling certain natural physical constraints.

Many applications of SMCR methods can be traced to the earliest
work implemented by Lawton and Sylvestre in 1971 [2,3]. This method
can analytically determine the pure profiles in a two-component
mixture, only based on bilinear structure of data and the non-
negativity property of molar absorptivities and concentrations. Borgen
and Kowalski [4] have been extending the Lawton–Sylvestre analytical
method for a three-component system. Rajkó and István [5] have
used computational geometry tools for SMCR method and have devel-
oped an algorithm to analytically draw Borgen plots of every three-
component system. Different procedures have been proposed for the
analytical calculation of feasible solutions. Beyramysoltan et al. [6]
revised and developed a new algorithm for drawing the Borgen plot.
Previously, several numerical attempts have been made, e.g. Henry

and Kim [7,8] extended SMCR method to determining the ‘feasible
region’ for a mixture of any number of components using linear
programming methods and applying physical constraints. However, it
turned out that they found only the permitted regions and not the
exact feasible regions. Wentzell et al. [9,10] proposed a non-linear opti-
mization procedure and Dynamic Monte Carlo SMCR (DMC-SMCR).
Gemperline and Tauler [11,12] attempted to calculate the band bound-
aries of feasible profiles through estimation of one of the feasible
solutions using alternating least squares and non-linear constrained op-
timization (MCR-BANDs method). Different developed methods for
computation of the range of feasible solutions [13] has been compared
by Rajkó.

Two-component grid search method [14] based on Resolving Factor
Analysis (RFA) has been proposed by Vosough et al. to systematically
analyze the range of feasible solutions. Later, it has been extended to a
three-component system by Golshan et al. [15]. Recently, Sawall et al.
[16] presented an approximation algorithm for the computation of the
feasible region based on inflation of polygons.

The major problem of SMCRmethods is rotational ambiguity due to
many possible solutions that can equivalently represent the measured
data. In order to decrease the range of feasible solutions, the application
of additional constraints is efficient. Unimodality of concentration
profiles, local rank, and selectivity are some useful constraints. Hard-
modeling constraint on concentration profiles can drastically decrease
the extent of rotational ambiguity. Application of hard-modeling
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constraint in SMCR methods has been studied by Golshan et al. [17].
Investigation of partial knowledge of the factors and its effect on the re-
duction of rotational ambiguity were carried out by Sawall et al. [18].
They exploited the available pure component spectral or concentration
profiles of some species. Beyramysoltan et al. [19] examined the impact
of equality constraint on the feasible region. For this purpose, a
novel systematic grid search method based on Species-based Particle
Swarm Optimization has been recommended. In addition, procedures
for implementing equality and unimodality constraints in Lawton–
Sylvestre method and imposing the equality constraint on Borgen plot
have been proposed [6].

For the first time, Tauler et al. [20–23] applied simultaneous analysis
(i.e. matrix augmentation) in Multivariate Curve Resolution (MCR)
methodswhich onlywould find one answerwithin the range of feasible
solutions. Simultaneous analysis of multiple chromatographic runs [20]
achieved accurate quantitative results while applying the constraints of
equal spectra and elution profiles. Indeed, a new constraint for
obtaining the correct shape for the recovered spectral and concentration
profiles has been proposed. Due to the fact that in simultaneous analy-
sis, the profiles of commonmode are forced to be equal, it can decrease
the feasible region [24]. Simultaneous analysis has widely been applied
in subsequent years [25,26]. Vosough et al. [14] have claimed that
simultaneous analysis of several data sets, even without applying addi-
tional constraints, is a powerful tool for the reduction of the range of
feasible solutions. They applied simultaneous analysis to their proposed
method, two-component grid search, to directly compare feasible
regions. It has been shown how such global analysis can result in a
significant reduction in the range of feasible solutions. However, the
question is under what conditions such reduction can be drown.

The ambiguity obtained through SMCR methods can hardly be
overcome to result in a unique solution. The results can partly be ambig-
uous even when using constraints. In literature, multi-set data analysis
(also called data multi-block, data fusion, or as was mentioned earlier
simultaneous analysis, matrix augmentation) has been proposed as a
powerful tool that results in better solutions. Consequently, multi-set
data analysis can be a common way when more than one data matrix
for the same system is available. However, this improvement cannot
always be achieved for multi-set data analysis. In this paper, with the
aid of self-modeling curve resolution (SMCR) methods (Lawton–
Sylvestre and three-component grid search), practicality and the extent
of the impact ofmulti-set data analysis are investigated. SMCRmethods,
which resolve the data sets into a range of feasible solutions, are power-
ful tools for the visualization of second order bilinear data structure and
reveal information about multi-component systems without any prior
knowledge. Thus, calculation of feasible regions instead of only one
answer is beneficial in multi-set data analysis studies. A common
abstract space is used for visualization of feasible regions of different in-
dividual and augmented data sets. Various factors through different ex-
amples are studied to systematically investigate the effect of multi-set
data analysis on feasible regions.

2. SMCR methods for a single data matrix

The ultimate goal of the SMCR methods is to obtain the range of
concentration (C) and spectral (A) profiles for any bilinear chemical
data set (D) according to the Bouguer–Lambert–Beer law (Eq. (1)).

DI; J ¼ CI;nA
T
n; J ð1Þ

Where I and J indicate the number of rows and columns respectively,
and n is the number of components that cause the variance in the data
set. Singular Value Decomposition (SVD) [27,28] can also decompose
the bilinear data matrix D to the left eigenvectors (U) and right eigen-
vectors (V), which define the orthogonal basis vectors of column and

row spaces (Eq. (2)).

DI; J ¼ UI;nSn;nVT
n; J ¼ XI;nVT

n; J ¼ UI;nYT
n; J ð2Þ

Where X and Y indicate the coordinates of row and column vectors
of the data sets in row and column spaces respectively and S is the
diagonal matrix of singular values. Since the subspaces spanned by
orthogonal X (mathematically more precisely, the orthonormal U) and
orthonormal V (i.e. U-space and V-space) are the same subspaces as
spanned by C and A respectively, thus X and V can be transformed to
C and Amatrices. Transformation is performed by any invertible matrix
T where I = T−1 T (Eq. (3)).

DI; J ¼ XI;n Tn;n
−1

� �
Tn;nVT

n; J

� �
¼ CI;nA

T
n; J ð3Þ

Without using constraints, an infinite number of solutions are
possible. However, for most T matrices, the obtained spectral and con-
centration profiles are not chemically and physically meaningful. Thus,
additional information about the studied system can be applied as a
constraint. In the absence of unique resolution, a set of T matrices can
fulfill the constraints and reconstruct the data matrix equally well. A
range of feasible solutions for C and A related to the sets of T matrices
is the result of rotational ambiguity. The most important constraint
that can be applied is non-negativity of concentrations and molar ab-
sorptivities as a natural property of most chemical systems. Additional
constraints such as hard-modeling, equality, unimodality, correlation
and also multi-set analysis can be applied and investigated through
SMCR methods to reduce the rotational ambiguity [29].

2.1. Lawton–Sylvestre method

Among methods for calculating feasible regions, Lawton–Sylvestre
method [2] can be applied to visualize rotational ambiguity for two-
component system. This method resolves the data set based on only
the non-negativity constraint. The result of analysis of a simulated
two-component system obtained by Lawton–Sylvestre method is
illustrated in Fig. 1. The data points (spectral profiles) can be projected
in row space spanned by V(1,:) and V(2,:) basis vectors. After normaliza-
tion, the coordinates of data points on the first eigenvector (V(1,:)) is
set to one. Consequently, the subspace of the data set can be visualized
in a one dimensional space which data points range is represented as a
line designated by the vertical green line in Fig. 1. In a two-component
system, two feasible regions are obtained on both sides of the data
line. The extreme points along the data line represent the inner bound-
aries of feasible region (green star in Fig. 1). The outer boundaries, the
same as non-negativity boundaries, can be determined by extrapolating

Fig. 1. Schematic results of Lawton–Sylvestre method. Data points are represented as a
vertical green line; the extreme green stars along the data line represent the inner
boundaries of feasible region and green circles indicate the outer boundaries. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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