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In spectroscopy, redundant information makes the number of input variables for a prediction model larger than
required. We present a method based on the physarum network to select the variable with the least correlation.
This method transforms the variable selection problem into a path finding problem and then solves the problem
based on the mechanism of foraging of Physarum polycephalum. Experimental results show that the physarum
network, combined with other feature selection or extraction methods, can select the least number of wave-
lengths without sacrificing the prediction performance.
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1. Introduction

Spectroscopy has been widely used to quantitatively analyze com-
plex samples because of its noninvasive, effective and speedy manner.
To achieve the spectroscopy analysis, a prediction model has to be
developed. It relates the spectral variables (spectra of samples) and
the property values (e.g., chemical concentration) of the samples. How-
ever, the spectral variables are normally high dimensional data, i.e., the
number of spectral variables is large, and redundant information is
contained in the variables. The large number of spectral variables can
not only make the prediction unreliable but also complicate the predic-
tion model and calculation. Therefore, dimensionality reduction, which
aims tofind theminimumnumber of variables (intrinsic dimensionality)
necessary to explain the property values [1], is usually employed before
the determination of a model.

Themethods used to reduce dimensionality can be grouped into two
types, i.e., feature extraction and feature selection from the point of view
of machine learning or statistics [2]. The feature extraction methods
project data from a high dimensional space into a low dimensional
space, e.g., principle component analysis/regression (PCA/PCR) [3], par-
tial least square regression (PLS) [4], etc. The feature selection methods
find a subset of the original data, e.g., genetic algorithm (GA) [5], inter-
val partial least squares regression (iPLS), etc. [6].

The feature extraction and feature selection methods can be used
together to further reduce the dimensionality without sacrificing the

prediction accuracy. A good example of this combination is GA-PLS. Be-
cause the PLS considers the information of both independent variables
and dependent variables to extract principle components [4], re-
searchers initially thought that PLS performed over thewhole spectrum
was good enough to reduce the dimensionality. However, it was later
found that PLS used together with GA can both simplify the prediction
model and improve the prediction accuracy [7]. Thus, GA-PLS has
become one of the most popular variable selection methods [8–11].

Several variable selection methods regard the feature selection
problem as an optimization problem. However, variable selection can
also be performed based on prior knowledge, such as peak absorbance
of the target components [6]. Though this selection method is effective
and can be used togetherwith other dimensionality reductionmethods,
it is less popular, probably due to the difficulty in obtaining or under-
standing the prior knowledge [6]. In this paper, we present a variable
selection method based on the characteristics of spectroscopy sensors.
The proposed method can be used together with optimization-based
variable selection or feature extraction methods to further reduce
dimensionality without sacrificing prediction accuracy, i.e., it uses the
minimum number of variables to predict property values. This charac-
teristic of the proposed method is important because it reduces the
calculation time and simplifies the prediction model, thus making the
method potentially suitable for real-time spectroscopy application.
The prior knowledge needed includes the spectral bandwidth and
increasing step of the spectrograph (see Section 2.1), which are easy
to understand and obtain.

Specifically, we use a physarum network (PN) [12] to search the
spectrum to obtain a subset of spectral variables with the least correla-
tion. The PN is used before GA or after iPLS. Experimental results show
that the PN-GA-PLS or iPLS-PN-PLSmethod can predict property values
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with a similar performance compared to GA-PLS or iPLS but with fewer
spectral variables.

2. Theory

2.1. Spectrograph and redundant spectral information

A spectrograph is a key part of spectroscopy instrumentation. It
splits the whole spectrum of white light into sub-spectral bands. The
reflectance or absorbance (spectral variable) of a sample at each sub-
spectral band can then be measured and related to the property values
of the sample. There are three common categories of spectrographs [13],
i.e., the dispersive spectrograph, the Fourier transform interferometer
and the narrow-band tunable filter. The sub-spectral bandwidth is
determined by the setting of the spectrograph, e.g., the slit of the disper-
sive spectrograph determines the sub-spectral bandwidth.

However, a spectrograph can normally measure the spectral re-
sponse with a step smaller than the sub-spectral bandwidth. For
example, a dispersive spectrograph with a 30 μm slit can give a 5 nm
bandwidth but can measure the spectral response with a 2 nm step
(resolution). This relationship between bandwidth and wavelength
increasing step is illustrated in Fig. 1. It is obvious that each spectral var-
iable at every spectral band includes information regarding the spectral
variables of the adjacent spectral band. Within a spectral range includ-
ing several spectral variables, one or two spectral variable(s) would be
enough to carry all of the information necessary for predicting property
values.

Random correlation between spectral variables can also lead to
redundant spectral information in selected variables. When a ratio of
variables to samples is equal to or larger than 5, the random correlation
will be so severe that it would be dangerous to use GA [7]. A method for
avoiding this random correlation could be creating new variables by
averaging the original ones [7]. In this way, the ratio variables/sample
could decrease to 5. However, creating one new variable by averaging
several adjacent spectral variables is amethod thatwill reduce the spec-
tral resolution. This averagingmethod may be opposite to the core idea
of using a spectrograph or spectroscopy, i.e., tomeasure radiation inten-
sity on narrower wavebands. In some cases, a property value may only
be related to a very narrow waveband with one to two spectral vari-
ables. Averaging these variables would not increase the final prediction
performance. An alternative way for solving the random correlation
problems would be to select variables with the least correlation.

2.2. Physarum network (PN) and its mathematical model

Physarum polycephalum is a slimemold. It can be in vegetative phase
that is called plasmodium. The plasmodium is an amoeba-like organism
with a body shape of a dendritic network consisting of tubular compo-
nents. Nakagaki et al. [14] conducted an interesting experiment in
2000. They put plasmodium in a maze with two food sources: one at

the entrance and the other at the exit of the maze. It was found that
the plasmodium changed its body shape to connect the two food
sources (entrance and exit); moreover, the plasmodium always con-
nected the two points using the shortest length of tubes, i.e., it finds
the shortest route in the maze.

After investigating the physiological background of plasmodium
growth, Tero et al. [15,16] developed a mathematical model based on
the physarum network for path finding. This model was proven to be
able to find the shortest route by Bonifaci [12] through mathematical
deduction. By advancing the physarum model, Liu et al. [17,18] devel-
oped a physarum optimization algorithm, which is suitable for solving
the Steiner tree problem with low complexity and high parallelism.

Tero's model assumes that the flowing of nutrients inside the tubes
of the physarum network is driven by the pressure due to the rhythmic
contractions of the tubes, with the entrance node of the maze being the
source of the nutrient flow and the exit node being the sink of the nutri-
ent flow.

The nutrient flux (nutrient flow per unit area) through node i (Ni) to
node j (Nj) in the maze is expressed as Qij, which can be computed by
using the formula

Qij ¼
πrij4 Pi−P j

� �
8ηLij

; ð1Þ

where Pi is the pressure at the node Ni, η is the viscosity coefficient of
the flow, and rij and Lij are the radius and length, respectively, of
the tube connecting Ni to Nj. If there is more than one tube connecting
Ni and Nj, then Q ij (rij, Lij) can be Q ij_1(rij_1, Lij_1), Q ij_2(rij_2, Lij_2),
or Qij_3(rij_3, Lij_3), representing the first, second and third tubes,
respectively.

A variable Dij ¼ πrij4

8η , i.e., the conductivity representing the ability to

conduct the flow, is defined in themodel; thus, Eq. (1) can be rewritten
as

Qij ¼
Dij Pi−P j

� �
Lij

: ð2Þ

Except for source (N1) and sink node (N2), each node is assumed to
be zero capacity. According to the conservation law of flow, the sum of
flux at each node can be

X
i

Q ij ¼ 0; j ≠ 1;2: ð3Þ

For the nodes N1 and N2, the flux equations are

X
j

Q1 j−I0 ¼ 0 ð4Þ

and

X
j

Q2 j þ I0 ¼ 0; ð5Þ

where I0 is the flux from the source node to the sink, which is assumed
to be constant in the model.

According to Eqs. (3)-(5), Eq. (2) can then be rewritten as

XDij

Lij
Pi−P j
� � ¼

I0;
−I0;

0;

8<
:

j ¼ 1
j ¼ 2

otherwise
: ð6Þ

The conductivity Dij is assumed to change when adapting to the flux
Qij. Moreover, the tubes with zero conductivity will die out. The evolu-
tion of Dij is expressed as

dDij=dt ¼ f Qij

�� ��� �
−Dij: ð7Þ
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Fig. 1. Illustration of bandwidth (5 nm) and measuring step of a spectrograph (2 nm).
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