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Abstract

In this paper, the differential transform method is proposed for solving non-linear oscillatory systems. These solutions
do not exhibit periodicity, which is the characteristic of oscillatory systems. A modification of the differential transform
method, based on the use of Padé approximants, is proposed. We use alternative technique by which the solution obtained
by the differential transform method is made periodic. The method is described and illustrated with examples. The results
reveal that the method is very effective and convenient.
� 2007 Elsevier B.V. All rights reserved.
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Keywords: Differential transform; Padé approximation; Laplace transform; Oscillatory equations

1. Introduction

The differential transform is an analytic method for solving differential equations. The concept of the dif-
ferential transform was first introduced by Zhou in 1986 [1]. Its main application therein is to solve both linear
and non-linear initial value problems in electric circuit analysis. This method constructs an analytical solution
in the form of a polynomial. It is different from the traditional higher order Taylor series method. The Taylor
series method is computationally expensive for large orders. The differential transform method is an alterative
procedure for obtaining analytic Taylor series solution of the differential equations. By using DTM, we get a
series solution, in practice a truncated series solution. The series often coincides with the Taylor expansion of
the true solution at point x = 0, in the initial value case. Although the series can be rapidly convergent in a
very small region, it has very slow convergence rate in the wider region we examine, and the truncated series
solution is an inaccurate solution in that region, which will greatly restrict the application area of the method.
Following [2,3] we propose the so-called aftertreatment technique (AT) to modify the differential transform
series solution for general ordinary differential equations with initial conditions by using the Padé approxi-
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mant. We will use Laplace transform and Padé approximant to deal with the truncated series. Padé approx-
imant [4] approximates a function by the ratio of two polynomials. The coefficients of the powers occurring in
the polynomials are determined by the coefficients in the Taylor series expansion of the function. Generally,
the Padé approximant can enlarge the convergence domain of the truncated Taylor series and can improve
greatly the convergence rate of the truncated Maclaurin series.

2. Differential transform method

Differential transformation of function yðxÞ is defined as follows [1]

Y ðkÞ ¼ 1

k!

dkyðxÞ
dxk

� �
x¼0

: ð1Þ

In (1), yðxÞ is the original function and Y ðkÞ is the transformed function. Differential inverse transform of
Y ðkÞ is defined as follows

yðxÞ ¼
X1
k¼0

xkY ðkÞ: ð2Þ

In fact, from (1) and (2), we obtain

yðxÞ ¼
X1
k¼0

xk

k!

dkyðxÞ
dxk

� �
x¼0

: ð3Þ

Eq. (3) implies that the concept of differential transformation is derived from the Taylor series expansion.
From the definitions (1) and (2), it is easy to obtain the following mathematical operations:

1. If f ðxÞ ¼ gðxÞ � hðxÞ; then F ðkÞ ¼ GðkÞ þ HðkÞ:
2. If f ðxÞ ¼ cgðxÞ; then F ðkÞ ¼ cGðkÞ; c is a constant:

3. If f ðxÞ ¼ dngðxÞ
dxn ; then F ðkÞ ¼ ðkþnÞ!

k!
Gðk þ nÞ:

4. If f ðxÞ ¼ gðxÞhðxÞ; then F ðkÞ ¼
Pk

l¼0GðlÞHðk � lÞ:
5. If f ðxÞ ¼ xn; then F ðkÞ ¼ dðk � nÞ; d is the Kronecker delta:

6. If f ðxÞ ¼
R x

0 gðtÞdt; then F ðkÞ ¼ Gðk�1Þ
k ; where k P 1:

7. If f ðxÞ ¼ gðtÞ
R x

0
hðtÞdt; then F ðkÞ ¼

Pk
l¼1Gðk � lÞ Hðl�1Þ

l ; where k P 1:

8. If f ðxÞ ¼ uðxÞvðxÞwðxÞ; then F ðkÞ ¼
Pk

s¼0

Pk�s
m¼0UðsÞV ðmÞW ðk � s� mÞ:

Example 1 (The Duffing equation).
Consider the equation

d2y
dt2
þ y þ �y3 ¼ 0; ð4Þ

the initial conditions are chosen to be yð0Þ ¼ a and y 0ð0Þ ¼ 0: Taking differential transform of (4), we
obtain

ðk þ 2Þðk þ 1ÞY ðk þ 2Þ þ Y ðkÞ þ �
Xk

s¼0

Xk�s

m¼0

Y ðsÞY ðmÞY ðk � s� mÞ ¼ 0; ð5Þ

where Y ðkÞ is the differential transform of yðtÞ and the transform of the initial conditions are Y ð0Þ ¼ a and
Y ð1Þ ¼ 0. By using Eq. (5) and the transformed initial condition, the following solution is evaluated using
MATHEMATICA up to x6

yðtÞ ¼ a� að1þ �a2Þ t
2

2
þ að1þ �a2Þð1þ 3�a2Þ t4

24
� að1þ �a2Þð1þ 24�a2 þ 27�2a4Þ t6

720
: ð6Þ
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