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a b s t r a c t

We survey the problem of deciding the stability or stabilizability of uncertain linear systemswhose region
of uncertainty is a polytope. This natural setting has applications in many fields of applied science, from
control theory to systems engineering to biology.We focus on the algorithmic decidability of this property
when one is given a particular polytope. This setting gives rise to several different algorithmic questions,
depending on the nature of time (discrete/continuous), the property asked (stability/stabilizability), or the
type of uncertainty (fixed/switching). Several of these questions have been answered in the literature in
the last thirty years. We point out the ones that have remained open, and we answer all of them, except
one which we raise as an open question. In all the cases, the results are negative in the sense that the
questions are NP-hard. As a byproduct, we obtain complexity results for several other matrix problems in
systems and control.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Robust control is an important topic that has motivated several
important research lines in systems and control since the eighties.
It has spanned a wide range of applications and has benefited
from many different techniques in applied mathematics, such as
algorithmic complexity, convex optimization, game theory, µ-
analysis, and others (see, e.g., [1,2]).

One of the simplest settings in robust control is a discrete-time
(resp. continuous-time) linear system describing the evolution of
a state space vector x ∈ Rn as follows:

x(t + 1) = A(t)x(t), (1)
ẋ(t) = A(t)x(t), (2)

where the matrix A(t) is restricted to belong to a given polytope1
P ⊂ Rn×n. Depending on the context, several different questions
may be relevant. In some situations, the matrix is fixed for the
whole trajectory, but its actual value is not determined, except for
the fact that it belongs to the polytope P . We refer to this case
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1 Note that polytopes are one of the simplest representations of compact sets, and
thus the negative results presented in this paper are generalizable tomore complex
compact sets.

as the fixed uncertainty case. In other situations the matrix A(t) is
allowed to change from time to time; the trajectory of the system
is determined by a switching signal σ :

σ : N → P : t → A(t), (3)

or, in the continuous-time case,

σ : R+ → P : t → A(t). (4)

We refer to this case as the switching uncertainty case. Typical
questions that one would like to answer are as follows:

Problem 1 (Stabilizability). Given a set of matrices {A1, . . . , Am}

describing a polytope

P = Conv{A1, . . . , Am},

does there exist a matrix A ∈ P (resp. a switching signal σ ) such
that the trajectory converges to zero for any initial condition?

Problem 2 (Stability). Given a set of matrices {A1, . . . , Am} de-
scribing a polytope

P = Conv{A1, . . . , Am},

does the trajectory converge to zero for every possiblematrixA ∈ P
(resp. every switching signal σ ) and every initial condition?
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Thus, the above setting raises eight different algorithmic ques-
tions, depending on the discrete/continuous nature of time, the
stability/stabilizability question, and the fixed/switching nature of
uncertainty. These questions are typical of Robust Control, where
one approximatively knows the dynamical system and wants to
ensure that it is stable, up to a certain perturbation of the model.
Many situations in practical applications boil down to one of these
cases (see, e.g., [3]).

A case of particular interest is the analysis of biological sys-
tems [4,5,2]. There, robustness can be needed because the system is
a linearization of a real nonlinear system, and one must then take
into account the discrepancy between the model and the real-life
situation, or it can be required because the system is not perfectly
known. Robustness also arises naturally in neural networks, for un-
certainty reasons, or because of the switching nature of their dy-
namics. The stabilizability problem also turns out to be relevant in
situations where one can control a system by activating a certain
mode, among a few ones that are available, in order to stabilize
the system. For instance, in virology, it has been reported that the
drug treatment for some viral disease like HIV could be improved
by switching among several medications from time to time [6]. Re-
cently, researchers in the control community have modeled this
situation as a switching system, where vector x(t) represents the
different concentrations of viral populations in the blood, and the
switching signal corresponds to the choice of medication at every
particular time [7,8]. Typically, in this application, one’s goal is to
design this switching signal so as to best control the population of
viruses in the patient’s body. This situation falls into the scope of
the present paper, as it can be modeled as a continuous-time stabi-
lizability problemwith switching uncertainty. Other applications can
be found in fields as diverse aswireless control networks [9,10], fluid
dynamics [11], or evenmedicine [12].

In the present paper we focus on the algorithmic problem of
answering the above questions. It turns out that all the cases that
are known are NP-hard [13–15]. However, it is important to men-
tion that practical algorithms have been developed for some of
these problems, which try to circumvent these negative results
andwhich provide practitionerswithworkablemethods that often
reach satisfactory answers in practice. For instance, sufficient con-
ditions have been proposed that are efficiently checkable (e.g. in
polynomial time) thanks to modern tools like convex optimization
methods for proving stability, or instability, of diverse types of un-
certain sets of dynamical systems. We refer to [16–24] and refer-
ences therein for various examples of such methods. While such
methods are of course important because they allowus in favorable
situations to obtain a solution to the problem, the negative results
we present in this paper are also very valuable, as they allow us to
understand theoretical barriers that no algorithm could overcome
(unless, of course, P = NP). Such negative results can also assist
in the development of new methods, as they help to understand
what type of performance one can hope for in any candidate new
method.

In Fig. 12 we summarize all known results in the literature
(including the oneswederive in this paper). One can see that all the
cases are nowknown to beNP-hard, except for the stabilizability of
continuous-time systems with switching uncertainty. In Section 4,
we state a conjecture which (if answered positively) would solve
the problem.

2 We note that in [13], a slightly different problem is analyzed, in which the
matrix A(t) is restricted to be a vertex of the polytope P . The problemwith arbitrary
switching in the entire polytope certainly makes sense for this particular question
too, but we are not aware of any analysis of this latter problem in the literature.

Fig. 1. Summary of the known results (superscript 2 mentioned in the artwork is
explained in Footnote 2).

2. Discrete-time systems with fixed uncertainty

In this section we analyze the stabilizability and stability
problems for discrete-time systems with fixed uncertainty. These
translate to the problems of asking, for a given matrix polytope,
whether there exists a matrix in the polytope with spectral radius
smaller than one, or larger than one, respectively. Both problems
turn out to be NP-hard.

2.1. Stabilizability

Problem 3 (polytope-min-radius). Given a set of real matrices,
is there a convex combination of those whose spectral radius is
smaller than one?

Theorem 1. The polytope-min-radius problem is NP-hard.

Proof. We establish a polynomial-time reduction from the
independent-set problem. This problem asks, for a given undi-
rected graph G = (V , E) and a positive integer j ≤ |V |, whether
G contains an independent set V ′ (a set of pairwise non-adjacent
vertices) with size |V ′

| ≥ j. This problem is NP-complete [25]. We
assume j ≥ 2 (otherwise the problem is trivial).

An instance of polytope-min-radius takes as input k real n × n
matrices Ai, with i = 1, . . . , k, and askswhether there exists a non-
negative vector π = (π1, . . . , πk)

⊤ with
k

i=1 πi = 1, such that
the matrix Bπ =

k
i=1 πiAi has spectral radius less than one. We

will proveNP-hardness of the problem for the special case inwhich
k = n, that is, when the number of input matrices equals their di-
mension. For any input instance of independent-set, our reduction
will construct (in a number of steps at most polynomial in the size
of the problem input) an instance of polytope-min-radius, such
that a polynomial-time algorithm for deciding the latter would im-
ply a polynomial-time for deciding the former.

Let (G, j) be an instance of independent-set, and let C be the
n × n adjacency matrix of the graph G. The matrix C is a symmet-
ric zero–one matrix with zeros in the main diagonal. Let ci denote
the i’th column of C , and let ei denote the length-n vector with 1 in
the i’th entry and all other entries zero. The reduction constructs
n nonnegative block matrices Ai, for i = 1, . . . , n, of size (n + 1)
× (n + 1):

Ai =


∅ ei + ci
e⊤

i r


, (5)

where r = 1 −
1

j−1 ∈ [0, 1) and ∅ denotes the n × n zero matrix.

The matrix Bπ =
k

i=1 πiAi then reads

Bπ =


∅ (I + C)π

π⊤ r


. (6)

The special block structure of Bπ allows us to analytically compute
its eigenvalues by manipulating the system Bπv = λv, and it is
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