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a b s t r a c t

In this paper, a constrained moving horizon estimation (MHE) strategy for linear systems is proposed.
Recently, the use of a pre-estimating linear observer in the forward prediction equations in the MHE
cost function has been proposed in order to reduce the effects of uncertainty. Here we introduce state
constraints within this formulation and investigate stability properties in the presence of bounded
disturbances and noise. The robustness and performance of the proposed observer is demonstrated with
a simulation example.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The moving horizon state estimator (MHE) has recently
received much attention in the literature, e.g., [1–4]. The idea of
MHE is to estimate the current states by solving a least squares
optimization problem, which penalizes the deviation between the
measurements and predicted outputs, and possibly the distance
from the estimated state and an a priori state estimate. Since the
MHE is based on a window of the most recent data, it can provide
a high degree of robustness in the presence of uncertainties such
as noise, disturbances and modeling errors; see [3].

Recently, the authors proposed an improved linear MHE ap-
proach [5] with a pre-estimating linear estimator instead of open
loop forward prediction equations normally being used in the cost
functions and constraints of theMHE. This development wasmade
in spirit to the so-called pre-stabilizing model predictive control
[6,7], where the control sequence is parameterized as perturba-
tions to a given pre-stabilizing feedback gain. In the MHE, the
injection term is parameterized as perturbations to a linear pre-
estimating observer. Hence, the states are estimated by a forward
simulation with a pre-estimator before optimized in the MHE. Its
motivation is to reduce the accumulation of estimation errors on
the horizon by using the output injection feedback for stabilization
and shaping the dynamics. Moreover, an important effect of the
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pre-estimation approach compared to, e.g., [1] is that additional
variables may not always need to be introduced in the optimiza-
tion problem in order to account for the unknown disturbances
that in our case are implicitly estimated and to some extent ac-
counted for by the pre-estimating linear observer. This greatly re-
duces the computational complexity of the approach. The use of
pre-estimation distinguishes the approach in [5] and the present
paper from the approaches known in the literature, e.g., [1–4]. The
pre-estimator leads to a different set of tuning parameters that can
be used to tune the performance, possibly achieving better perfor-
mance than other approaches that are parameterized and tuned
differently.

In this paper, the method of Sui et al. [5] is extended to take
into account state constraints, which can be expected to improve
performance as in [1,2,8]. Moreover, instead of using scalar weight
parameters, weight matrices are introduced into the cost function.
It is shown that the estimated error is input-to-state-stable (ISS)
with respect to measurement noise and disturbance inputs.

The outline of the paper is as follows. After Introduction, some
preliminaries are given in Section 2. The proposed constrained
linear MHE is formulated in Section 3, and its convergence is
investigated in Section 4. The robust performance of the proposed
observer is demonstrated in a simulation example in Section 5,
before some conclusions are given in Section 6.

1.1. Notation and nomenclature

A positive definite (semi-positive definite) square matrix A is
denoted by A > 0 (A ≥ 0). ∥x∥2

A = xTAx with A ≥ 0. Let ρ(A)
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denote the spectral radius of a square matrix A. For two vectors
x ∈ Rn and y ∈ Rm we let col(x, y) denote the column vector in
Rn+m where x and y are stacked into a single column. A set X ⊂ Rn

is said to be a C set if it is a compact and convex set that contains
the origin in its (non-empty) interior. Suppose X, Y ⊂ Rn; then the
P-difference of X and Y is X ⊖ Y = {z ∈ Rn

: z + y ∈ X, ∀y ∈ Y }.
A function ϕ : R+

→ R+ is called a K -function if ϕ(0) = 0
and it is strictly increasing. A function ϕ : R+

→ R+ is called
a K∞-function if ϕ ∈ K and it is radially unbounded. A function
β : R+

× R+
→ R+ is called a KL-function if for each fixed k ∈ R+,

β(·, k) ∈ K and for each fixed s ∈ R+, β(s, ·) is non-increasing
and limk→∞ β(s, k) = 0. For a sequence {zj} for j ≥ 0, z[t] denotes
the truncation of {zj} at time t , i.e. z[t] = {zj} for 0 ≤ j ≤ t . A
polyhedron is the (convex) intersection of a finite number of open
and/or closed half-spaces and a polytope is the closed and bounded
polyhedron.

2. Background

Consider the following discrete-time linear time-invariant
system

xt+1 = Axt + But + ξt , (1)
yt = Cxt + ηt , (2)

where xt ∈ X ⊆ Rnx , ut ∈ Rnu and yt ∈ Rny are the state, input
and the measurement, respectively, ξt ∈ Rnx is an unknown dis-
turbance, ηt ∈ Rny is unknown measurement noise, and t is the
discrete time index. It is assumed that the disturbance ξt and noise
ηt lie in the C sets Ξ and Σ , respectively, and X is a known set
which will be used to define state constraints on the state estima-
tion problem.We assume that the input andmeasurement data are
bounded.

While [5] considers detectable systems, we consider without
loss of generality observable systems:

(A1) the pair (A, C) is observable.

By decomposing a detectable linear system into observable and
unobservable sub-systems, the present design approach is directly
extended with an open loop observer for the asymptotically stable
unobservable subsystem.

2.1. Linear observer

A linear time-invariant filter (e.g. the Luenberger observer or
the stationary Kalman filter) estimates the state according to

x̂t+1 = Ax̂t + But + L(yt − ŷt), (3a)

ŷt = Cx̂t , (3b)

where x̂t ∈ Rnx is the current observer state, ŷt ∈ Rny is the
current observer output estimate, and the observer gain matrix is
defined by L ∈ Rnx×ny such that the error dynamics characterized
by Φ := A − LC are asymptotically stable:

(A2) L satisfies ρ(Φ) < 1.

The estimated state x̂ satisfies the following uncertain dynamics

x̂t+1 = Ax̂t + But + LCẽt + Lηt , (4)

while the state estimation error ẽt = xt − x̂t satisfies

ẽt+1 = Φ ẽt + dt , (5)

where dt = ξt − Lηt . Thus there always exists a C set D such that
dt ∈ D.

Definition 1 ([9]). A set T ⊂ Rnx is disturbance invariant (d-
invariant) for the system xt+1 = Axt + ξt and the constraint set
(X, Ξ) if T ⊆ X and xt+1 ∈ T for all ξt ∈ Ξ and xt ∈ T .

Due to ρ(Φ) < 1, there exists a set E such that it is d-invariant for
the system (5). It implies that if ẽ0 ∈ E, then ẽt ∈ E, ∀t ≥ 0. In
this paper the set E is chosen as the outer bound of the minimal
d-invariant set of system (5). Methods to compute such a set
for linear systems have appeared in the literature; see for
example, [10,11].

2.2. Input-to-state stability

The concept of input-to-state stability (ISS) has been widely
used in stability analysis and control synthesis. Recently, some
of the well-established results in ISS for continuous time nonlin-
ear system have been extended to discrete-time nonlinear sys-
tems [12]. Some of the results of ISS are reviewed in this section.

Consider the following discrete-time nonlinear system:

zt+1 = g(zt , ut) (6)

or z+
= g(z, u), where zt ∈ Z ⊆ Rnz and ut ∈ U . We define the

notion of input-to-state stability [12].

Definition 2. The system (6) is ISS; if there exists a KL-function θ̃ ,
and a K∞-function γu such that for any t ≥ 0, any initial conditions
z0 ∈ X and any u[t−1] with uj ∈ U, 0 ≤ j ≤ t−1, then the following
is true:

∥zt∥ ≤ θ̃ (∥z0∥, t) + γu(∥u[t−1]∥). (7)

Definition 3. A continuous function V : Rnz → R ≥ 0 is called an
ISS-Lyapunov function for the system (6) if the following holds:

1. V (0) = 0.
2. There exist K∞-functions α1, α2 such that for any z,

α1(∥z∥) ≤ V (z) ≤ α2(∥z∥). (8)

3. There exists a K -function σ , such that for any z and any input
signals u

V (z+) − V (z) ≤ −α3(∥z∥) + σ(∥u∥) (9)

or

V (z+) − V (z) ≤ −α3(∥z+
∥) + σ(∥u∥) (10)

with α3 positive on R+.

Theorem 1 ([12]). If the system (6) admits an ISS-Lyapunov func-
tion, then it is ISS.

Note that an ISS system is globally asymptotically stable in the
absence of input or if the input is decaying. If the input is merely
bounded then the evolution of the system is ultimately bounded in
a set whose size depends on the bound of the input.

3. Linear moving horizon estimation

An MHE recursively estimates the state based on a finite
window of current and past data. It estimates the state vectors
xt−N , . . . , xt at any time t = N,N + 1, . . . , on the basis of the
a priori estimate x̄t−N,t and the current information vector defined
as

It = col(yt−N , . . . , yt , ut−N , . . . , ut−1),

where N + 1 is the window length or horizon.
Like in [5], we formulate the MHE strategy by introducing a

linear observer as a pre-estimating observer, since the injection
term will reduce the effect of uncertainty (e.g. model errors,
disturbances and noise) in the a priori estimate and predictions,
and thereby contribute to improve the accuracy. The proposed
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