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a b s t r a c t

In this paper we consider the problem of infinite-horizon sensor scheduling for estimation in linear
Gaussian systems. Due to possible channel capacity, energy budget or topological constraints, it is
assumed that at each time step only a subset of the available sensors can be selected to send their
observations to the fusion center, where the state of the system is estimated by means of a Kalman
filter. Several important properties of the infinite-horizon schedules will be presented in this paper. In
particular, we prove that the infinite-horizon average estimation error and the boundedness of a schedule
are independent of the initial covariancematrix.We further provide a constructive proof that any feasible
schedule with finite average estimation error can be arbitrarily approximated by a bounded periodic
schedule. We later generalized our result to lossy networks. These theoretical results provide valuable
insights and guidelines for the design of computationally efficient sensor scheduling policies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Sensor networks span a wide spectrum of applications, e.g.,
environment and habitat monitoring, health care, home and office
automation, and traffic control [1]. In many of these applications, a
centralized fusion center is implemented to collect and process the
measurements for estimation purposes. Sensor nodes are typically
battery powered, and therefore energy constrained. Furthermore,
their radios are low-power and may be subject to interference
and fading. As a result of the bandwidth and energy constraints,
it is not advisable, and sometimes infeasible, for all the sensors to
communicate with the fusion center within each sampling period.
Thus, it is of significant interest to determine sensor scheduling
policies able to tradeoff energy/bandwidth consumption and
estimation quality.

Sensor network energy consumptionminimization and lifetime
maximization problems have been active areas of research in
recent years. Sensor networks’ energy management is typically
carried out via efficient MAC protocols [2] or via efficient
scheduling of sensor states [3,4]. Xue and Ganz [5] showed that
the lifetime of sensor networks is influenced by transmission
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schemes, network density and transceiver parameters with
different constraints on network mobility, position awareness and
maximum transmission ranges. Chamam and Pierre [6] proposed
a sensor scheduling scheme capable of optimally putting sensors
in active or inactive modes. Shi et al. [7] considered sensor
energy minimization as a mean to maximize the network lifetime
while guaranteeing a desired quality of the estimation accuracy.
The same authors further proposed a sensor tree scheduling
algorithm [8] which leads to longer network lifetimes.

Performance optimization for sensor networks under given
energy constraints, which can be seen as the dual problem of
network energy minimization, has also been studied by several
researchers. Such constrained optimization problem has been
studied for continuous-time linear systems by Miller and Rung-
galdier [9] andMehra [10]. Krishnamurthy [11] derived the optimal
sensor scheduling for the estimation of a Hidden Markov Model
based system. For discrete-time linear systems, approaches using
dynamic programming [12], greedy algorithms [13], convex opti-
mization [14–16] and branch and bound [17] have been proposed
to find the optimal or suboptimal sensor scheduling over finite
time horizons. In general, the sensor scheduling problem is a com-
binatorial optimization problem [18] and thus the exact optimal
solution over long time horizons is computationally intractable.
However, the exact optimal schedule can be computed in some
very particular cases. For instance, Shi and Zhang [19] and Hov-
areshti et al. [20] prove that under certain conditions, the optimal
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Table 1
Notations.

S Set of sensors
S Collection of all eligible subsets of S
Ik Subset of sensors selected at time k
σ An infinite sensor schedule in the form of (I1, I2, . . .)

Σ The covariance of the initial state x0
Q The covariance of process noise
R The covariance of measurement noise
J(σ , Σ) The average trace of the error covariance matrix
ri(σ ) The average communication rate of sensor i

infinite-horizon schedule is periodic for a system with two smart
sensors.

Power control has also been studied [21,22] to increase the
energy efficiency of sensors. To this end, a sensor could use a
lower power level to communicate information, which results in
either a lower SNR, an increase in communication delay or a larger
packet drop probability. Conceptually, for sensors with finitely
many power levels, a virtual sensor could be assigned to each
power level. Hence, the usage of power control can be seen as a
special case of sensor scheduling.

In most of the works cited above, the optimal schedule can
only be computed for linear systems over a finite-horizon, while
only for specific systems an infinite-horizon policy can be derived.
Moreover, for general systems, the solution is usually given as the
result of an optimization problem and thus implicit. In this paper,
we consider the problem of sensor scheduling for state estimation
of linear LTI systems with Gaussian noise over an infinite-horizon.
In particular we focus on proving several fundamental properties
that can be used as guidelines for the analysis and design of
infinite-horizon sensor schedules. In particular, we prove the
following two propositions concerning scheduling policies:

1. The average estimation error of a schedule is independent of the
initial covariance of x0.

2. Any schedule that has a bounded average estimation error
can be arbitrarily approximated (both in terms of average
estimation error and communication rate) by bounded periodic
schedules.

These results have important practical consequences as bounded
periodic schedules are easier to compute than general ones.

The rest of the paper is organized as follows: in Section 2, we
formulate the infinite-horizon sensor scheduling problem. In
Section 3, we prove that the average estimation covariance is
independent of the initial conditions. We further provide a
constructive proof that any feasible schedule can be arbitrarily
approximated byboundedperiodic schedules in Section 4.We then
generalize our results to lossy networks in Section 5. A numerical
example is presented in Section 6 to illustrate the performance of
periodic schedules. Finally, Section 7 concludes the paper.
Notations: We summarize the notations used in this paper in
Table 1.

2. Problem formulation

Consider the following discrete-time LTI system

xk+1 = Axk + wk, (1)

where xk ∈ Rn represents the state and wk ∈ Rn the process noise.
It is assumed that wk and x0 are independent Gaussian random
vectors, x0 ∼ N (0, Σ) and wk ∼ N (0, Q ), where Σ, Q > 0.1
A wireless sensor network composed of m sensing devices S =

1 All the comparisons betweenmatrices are in the sense of positive semidefinite.

{s1, . . . , sm} and one fusion center is used to monitor the state of
system (1). The measurement equation is
yk = Cxk + vk, (2)
where yk = [yk,1, yk,2, . . . , yk,m]

′
∈ Rm is the measurement

vector.2 Each element yk,i represents the measurement of sensor
i at time k, C =


C ′

1, . . . , C
′
m

′ is the observation matrix and the
matrix pair (C, A) is assumed observable, vk ∼ N (0, R) is the
measurement noise, assumed to be independent of x0 and wk.

Suppose that due to energy, bandwidth or topological con-
straints, only a subset of sensors can be chosen to send their
measurements to the fusion center. Denote the collection of all
eligible subsets as S ⊆ P (S), where P (S) denotes the power set
of S, i.e., the collection of all subsets of S.

For any I = {si1 , . . . , sil} ∈ S, we define the selection matrix
Γ (I)

Γ (I) ,

ei1 , . . . , eil

′
,

where ei is the ith vector of the canonical basis, i.e. a vector with
entries 0 everywhere, except a 1 at the ith entry. By means of this
selection matrix we can define the matrices
C(I) , Γ (I)C, R(I) , Γ (I)RΓ (I)′,

that allow one to define the matrix-valued function g(X, I) as

g(X, I) ,

(AXA′

+ Q )−1
+ C(I)′R(I)−1C(I)

−1
.

A schedule is defined as an infinite sequence of σ , (I1,
I2, . . .) satisfying the constraint Ik ∈ S. Clearly, if a schedule σ
is used, the covariance of the Kalman filter satisfies the following
equation:
Pk = g(Pk−1, Ik), P0 = Σ . (3)

Remark 1. In case of quantized measurements, You et al. [23] and
Msechu et al. [24] propose a Quantized Kalman Filtering (QKF)
algorithm, where the approximated Pk follows a modified Riccati
equation similar to (3). As a result, all the results discussed in this
paper can be generalized to QKF.

Since Pk is a function of both the sensor schedule σ and the
initial condition Σ , we will denote Pk as Pk(σ , Σ). Let us define
the cost function J(σ , Σ) as

J(σ , Σ) , lim sup
N→∞

1
N

N
k=1

tr(Pk(σ , Σ)).

J(σ , Σ) can be seen as the average estimation error. Moreover, let
us define the average communication rate of sensor i as

ri(σ ) , lim sup
N→∞

1
N

N
k=1

Isi∈Ik ,

where I is the indicator function.

Remark 2. Our formulation can address a large class of sensor se-
lection problems. In particular, the set S can be used to character-
ize the topological and communication constraints of the network,
while variables ri define the average usage of the sensors, which
can be used to define energy constraints on sensors.
We have the following definitions:

Definition 1. A schedule σ is called feasible if for all initial condi-
tions Σ , J(σ , Σ) < ∞.

Definition 2. A schedule σ is called bounded if for all initial con-
ditions Σ > 0, there exists a matrix M(Σ), such that Pk(σ , Σ) ≤

M(Σ) for all k.3

2 The ′ on a matrix always means transpose.
3 Note that while boundedness clearly implies feasibility, the converse is not

always true. It is enough to consider the sequence of Pk is {1, 0, 2, 0, 0,
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