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Locally weighted partial least squares (LW-PLS) is one of Just-in-Time (JIT) modeling methods; PLS is used to
build a local linear regression model every time when output variables need to be estimated. The prediction ac-
curacy of localmodels strongly depends on the definition of similarity between a newly obtained sample and past
samples stored in a database. To calculate the similarity, the Euclidean distance and the Mahalanobis distance
have been widely used, but they do not take account of the relationship between input and output variables.
This fact limits the achievable performance of LW-PLS and other locally weight regression methods. Thus, in
the present work, covariance-based locally weighted PLS (CbLW-PLS) is proposed by integrating LW-PLS and a
new similarity index based on the covariance between input and output variables. CbLW-PLS was applied to
two industrial problems: soft-sensor design for estimating unreacted NaOH concentration in an alkali washing
tower in a petrochemical process, and process analytical technology (PAT) for estimating concentration of a re-
sidual drug substance in a pharmaceutical process. The proposed similarity indexwas comparedwith six conven-
tional indexes based on distances, correlations, or regression coefficients. The results have demonstrated that
CbLW-PLS achieved the best prediction performance of all in both case studies.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Real-time monitoring and control of product quality are difficult in
most manufacturing processes because product quality is not always
measured in real time. On the other hand, the number of measured var-
iables and the amount of data stored in databases are rapidly increasing.
Such a situation has motivated us to predict the difficult-to-measure
product quality from easily measurable process variables and to use
predicted values instead of measurements for real-time monitoring
and control. In other words, virtual sensing technology is crucial in
predicting product quality or other important variables when online
analyzers are not available [1]. Virtual sensing technology has been
successfully applied to various processes in various industries. It is
known as soft-sensors in the refinery/petrochemical industry, pro-
cess analytical technology (PAT) in the pharmaceutical industry,
and virtual metrology (VM) in the semiconductor industry.

In recent years, Just-in-Time (JIT) modeling has attracted a lot of
attention in order to prevent deterioration of prediction accuracy due
to changes in process characteristics and operating conditions. In fact,
Kano and Ogawa reported in 2009 that the maintenance of models is

the most critical issue concerning soft-sensors on the basis of the ques-
tionnaire survey of process control applications [2]. More than 30% of
the engineers pointed out the necessity to cope with changes in process
characteristics and operating conditions in order to keep the prediction
performance of soft-sensors.

To copewith changes in process characteristics and operating condi-
tions, various recursive methods have been proposed and their applica-
tions have been reported. A review of adaptation techniques was given
by Kadlec et al. [3]. The concept drift theorywas exploited to classify the
algorithms into three different types: 1) moving windows techniques,
2) recursive adaptation techniques, and 3) ensemble-based methods.
Recursivemethods can adaptmodels to new operating conditions grad-
ually, but the model may adapt excessively and not function in a suffi-
ciently wide range of operating conditions when a process is operated
within a narrow range for a certain period of time. An approach to pre-
vent excessive recursive PLS update is minimizing the number of recur-
sive PLS update runs while maintaining the model [4]. A more serious
drawback of recursive methods is that they cannot cope with abrupt
changes in process characteristics.

In such situations, JIT modeling is desirable. JIT modeling technique
constructs a model every time when prediction is required so that it
can adapt themodel to time-varying process characteristics and operat-
ing conditions. It constructs a local model by weighting samples in a
database according to the similarity between a newly obtained sample

Chemometrics and Intelligent Laboratory Systems 146 (2015) 55–62

⁎ Corresponding author.
E-mail address: manabu@human.sys.i.kyoto-u.ac.jp (M. Kano).

1 Present affiliation: A. T. Kearney, Tokyo, Japan.

http://dx.doi.org/10.1016/j.chemolab.2015.05.007
0169-7439/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2015.05.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.chemolab.2015.05.007
mailto:manabu@human.sys.i.kyoto-u.ac.jp
http://dx.doi.org/10.1016/j.chemolab.2015.05.007
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/01697439


(query) and past samples. The JITmodeling concept has been integrated
with linear and nonlinear regression methods such as multiple regres-
sion analysis (MRA) [5] and support vector regression (SVR) [6,7]. JIT
modeling and its industrial applications were recently surveyed by
Kano and Fujiwara [1].

In particular, JITmodeling integratedwith partial least squares (PLS) is
called locally weighted PLS (LW-PLS) [8], which has been successfully ap-
plied to various industrial processes. In the pharmaceutical industry, for
example, LW-PLS has been applied to estimation of active pharmaceutical
ingredients (API) content with near infrared (NIR) spectroscopy [8], esti-
mation of the amount of residual drug substances in cleaning processes
with infrared-reflection absorption spectroscopy (IR-RAS) [9], and NIR-
based real-time monitoring of ingredient concentration during blending
[10]. Other applications of LW-PLS include inferential control of product
quality in the petrochemical industry [11], maize hardness characteriza-
tion in the food industry [12], VM in the semiconductor industry [13],
and determination of clinical parameters in human serum samples with
Fourier transform infrared (FTIR) spectroscopy [14]. In addition, several
updating strategies including LW-PLSwere compared in the prediction ac-
curacy byusing anNIRdataset of gasoline [15]. Furthermore, LW-PLS algo-
rithm was extended to improve the estimation performance or to cope
with different problems. Such extension includes locally weighted partial
least squares-discriminant analysis (LW-PLS-DA) for non-linear classifica-
tion [16] and a Bayesian framework providing a systematic way for real-
time parameterization of the similarity function, selection of the
local PLS model structure, and estimation of the correspondingmodel pa-
rameters [17].

The definition of similarity plays a crucial role in improving the pre-
diction accuracy of JIT modeling technique including LW-PLS. Similarity
indexes are usually defined on the basis of the Euclidean distance or the
Mahalanobis distance [8,18]. Other similarity indexes take account of
the angles between a query and samples in a database [6,19]. In addi-
tion, the prediction accuracy can be significantly improved by using
the similarity index based on the weighted distance, whose weights
are derived from physical properties of target material [9]. There have
been various works that calculate the weighted distance based on the
regression coefficients of MRA, PLS, and LW-PLS [5,20]. However,
these methods require constructing a regression model in advance to
calculate the similarity index, therefore the computational load is heavy.

In the present work, focusing on LW-PLS, we propose a new similar-
ity index that takes account of the relationships both among input
variables and among input and output variables with suppressing an in-
crease in computational load. The proposed method is referred to as
covariance-based LW-PLS (CbLW-PLS). Case studies are conducted
through two different operation data in real plants to compare the pro-
posed similarity index with other similarity indexes in the prediction
performance of LW-PLS.

This paper is organized as follows: LW-PLS is described in Section 2,
and the new similarity index is proposed in Section 3 The distribution of
each similarity index is visualized through a numerical experiment in
Section 4. The case studies are shown in Section 5 to demonstrate the
effectiveness of the proposed method. Finally, the conclusion is given
in Section 6.

2. Locally weighted partial least squares (LW-PLS)

In this section, PLS and LW-PLS are briefly explained.

2.1. Partial least squares (PLS)

In general, PLS is preferable to multiple regression or ordinary least
squares (OLS) when a linear regression model is built from process
data, because PLS can deal with multicollinearity that prevents from
obtaining a reliable model by using OLS. Multicollinearity appears in a
situationwhere input variables are nearly or completely linearly depen-
dent; such a situation is common in process data analysis. To address

this issue, PLS derives latent variables as linear combinations of input
variables and uses them to predict output variables.

Suppose data of input variables and an output variable are given as
X∈ℜN × M and y∈ℜN. These variables aremean-centered and properly
scaled, e.g. normalized. A PLSmodel with K latent variables is expressed
as follows:

X ¼ TPT þ E ð1Þ

y ¼ Tqþ f ð2Þ

where T ∈ℜN × K is a score matrix consisting of latent variables tk ∈ℜN

(k=1, 2,…, K), P ∈ℜM × K consisting of pk ∈ℜM is a loading matrix of
X, q ∈ ℜK is a regression coefficient vector from latent variables to the
output variable, and E and f are residuals.

In PLS, the model is constructed in an iterative manner through the
NIPALS algorithm [21]. After X1 = X and y1 = y are set, the variable
matrices at the k th iteration (k ≥ 2) are written as

Xk ¼ Xk−1−tk−1pT
k−1 ð3Þ

yk ¼ yk−1−tk−1qk−1 : ð4Þ

The k th latent variable tk is expressed as

tk ¼ Xkwk ð5Þ

where the k th weighting vector wk, the kth column of the weighting
matrix W, is determined so that the inner product between tk and yk
is maximized under the constraint ‖wk‖ = 1. The Lagrange multiplier
method enables us to derive wk, pk, and qk as follows.

wk ¼
XT
kyk

XT
kyk

��� ��� ð6Þ

pk ¼
XT
ktk

tTktk
ð7Þ

qk ¼
yTktk
tTktk

: ð8Þ

This procedure is repeated until k reaches the number of adopted
latent variablesK. This PLS algorithm is knows as PLS1 because the num-
ber of output variables is one; PLS2 is available when multiple output
variables need to be predicted simultaneously.

2.2. Locally weighted partial least squares (LW-PLS)

LW-PLS is a JIT modeling method that constructs a local regression
model according to the similarity between a query (target sample)
and past samples stored in a database [8]. It has attracted much atten-
tion as a tool for virtual sensing since it can cope with changes in oper-
ating conditions and process characteristics.

Here the algorithm of LW-PLS is explained. {xnm} and {ynl} (n =
1, 2, …, N; m = 1, 2, …, M; l = 1, 2, …, L) are preprocessed measure-
ments of input and output variables, where M and L are the numbers
of input and output variables, respectively. As the preprocess, an
adequate scaling is necessary to achieve high prediction performance.
The same preprocess should be applied both to samples in the database
and to the query. The n th sample is expressed as

xn ¼ xn1; xn2;…; xnM½ �T ð9Þ

yn ¼ yn1; yn2;…; ynL½ �T : ð10Þ
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