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Abstract

Let Ay =/, A is a linear operator in a Hilbert space H, y L N(A) := {u: Au=0}, R(A) :={h:h= Au, u € D(A)} is not
closed, ||f5 — f]| < 0. Given f;, one wants to construct us such that lims_¢||us — y|| = 0. Two versions of discrepancy prin-
ciples for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution u; to the
original equation Ay = f are formulated and mathematically justified.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let A be a linear bounded operator in a Hilbert space H (or in a Banach space X), and equation
Au=f (1)

be solvable, possibly non-uniquely. Let N(4) = N and R(A4) denote the null-space and the range of A4, respec-
tively. Denote by y the (unique) minimal-norm solution to (1), y L N. Given f;, ||f5 — f]| < 0, one wants to find
a stable approximation us to y:

tim [l — | = 0. @)

There are many ways to do this: variational regularization, quasi-solutions, iterative regularization (see e.g.,

[1.3).
In [4] a version of the discrepancy principle for DSM was proved. This version consisted in solving the
equation for #:
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T A" fs = fill = ¢,
where ¢ = const € (1,2), and a(f) > 0 was monotonically decaying and satisfied the assumption:

lim sup |a(s)|a2(t) = 0.
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Here we relax the assumptions on «(¢) and make the principle easier to apply numerically.
We study a new version of the dynamical systems method (DSM) for finding u;:

l;t(s(t) = —u5(t) + T;&)A*f(s, u(s(O) = uop, (3)
where T := A*A is self-adjoint, T, := T + al, I is the identity operator,
. d
0<a(t); a(t)\0 ast—oo; lim2=0, a::d—‘:. (4)
t—oo

The element ugs in (2) is us(ts), where us(¢) is the solution to (3), and ¢5, the stopping time, is found from the
following equation for the unknown ¢:

t
| e awlo s = e ce ), ®)

where Q := AA" is self-adjoint, Q, = Q + al, ¢ is a constant, and ||f;|| > ¢d. This equation we call a discrepancy
principle. About other versions of discrepancy principles see [2-8].
The main result of this paper is the following theorem.

Theorem 1. Assume that (4) holds, ||f5|| > ¢, and

lim ¢'a(1)[Q,15]] = oc. (6)
Then Eq. (5) has a unique solution ts,
1}1113 ts = 00 (7)

and (2) holds with us := us(ts).

Remark 1. Assumption (6) is always satisfied if f5 ¢ R(A4). Indeed,

ol azd(EAf;)af()) B
(a+2)°
where E; is the resolution of the identity, corresponding to the self-adjoint operator Q, P is the orthoprojector
onto the null-space N(Q) of O, N(Q) = N(AA™) = N(A™) := N, and ||Py-f5|| > 0 if f5 & R(A), because R(4) =

(N*)™.

lim a0, 3] =ty | B > 0,
a— a— 0

In Section 2, we prove Theorems 1 and 2, which says that (2) holds without assumption (6) but with an extra

assumption lim, . ;2((;2) =0.

2. Proofs

Let
h(t) = a(0) [ Ay /5]l = a(0)g(2).

Lemma 1. Assume (6). Then

e'h(t)
e ®
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