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In the field of chemometrics and other areas of data analysis the development of new methods for statistical
inference and prediction is the focus of many studies. The requirement to document the properties of new
methods is inevitable, and often simulated data are used for this purpose. However, when it comes to simulating
data there are few standard approaches. In this paper we propose a very transparent and versatile method for
simulating response and predictor data from a multiple linear regression model which hopefully may serve
as a standard tool simulating linear model data. The approach uses the principle of a relevant subspace for
prediction, which is known both from Partial Least Squares and envelope models, and is essentially based on a
re-parametrization of the random x regression model. The approach also allows for defining a subset of relevant
observable predictor variables spanning the relevant latent subspace, which is handy for exploring methods for
variable selection. The data properties are defined by a small set of input-parameters defined by the analyst. The
versatile approach can be used to simulate a great variety of data with varying properties in order to compare
statistical methods. The method has been implemented in an R-package and its use is illustrated by examples.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the process of developing new statisticalmethods formultiple lin-
ear regression, prediction and variable selection it is convenient to have
a simple approach and accessible software for data simulation where
the properties of the data can be controlled by a few parameters. Then
it is easy to test the methodology on data with known properties, such
as the number of predictor variables, the number of observations, the
number of truly relevant predictor variables, the information content
among other things, and even test out what predictor to use. Here we
present a new R-package, simrel [1], making this readily available for
all developers of statistical methodology. The simulations are based on
a multivariate normal distribution giving rise to a best linear predictor
for a response variable y given a set of predictor variables comprising
a predictor matrix X. The user defines the data properties by a set of
input parameters, and the output is training data, test data (optional)
and the vector of true regression coefficients.

There is a vast literature on simulation. The topic is amongothers ex-
haustively discussed in [2]. Also the performance ofmore advanced pre-
diction methods is investigated by aims of simulations. Among earlier

paperswe canmention [3] on ridge regression, [4] on shrinkage estima-
tors, [5] and [6] on subset selection methods, [7] comparing Ridge re-
gression and PLS, and [8] conducted a study of the performance of PLS
and PCR using the same concept of relevant components as is used in
this paper. Although the literature on data simulation for method com-
parisons is vast, a systematic tool for doing such comparisons has in our
knowledge not been available up until now.

Themodel parametrization is based on the concept of relevant com-
ponents [9–11] where it is assumed that there exists a y-relevant sub-
space of the full variable space which is spanned by a subset of the
eigenvectors of the covariance matrix of the x-variables. All relevant
information for the prediction of y is contained in this sub-space and
consequently, the orthogonal space is irrelevant. Here we also assume
that the relevant sub-space is spanned by a subset of the predictor var-
iables. In this waywemay construct a set of relevant predictor variables
with truly non-zero regression coefficients, which for instance should
be recognized by variable selection methods. The user can control the
signal to noise content in the predictor data by setting the true coeffi-
cient of determination, ρ2, for the data. Other input parameters are the
degree of collinearity in the predictor matrix (by controlling the decline
in the eigenvalues of the x-covariance matrix) and the position of the
relevant components (in the list of ordered eigenvectors).

[11] showed that prediction is relatively easy if the directions in the
predictor space with large variability (large eigenvalues) are also the
most relevant for prediction (given that ρ2 is not very small), whereas
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the opposite is true if the y-relevant information is associated with
directions in the x-space with low variability (small eigenvalues).

The package also provides a tool for designing computer experi-
ments based on the Multilevel Binary Replacement (MBR) design
approach of [12]. The MBR-design provides a way of setting up a frac-
tional design for large scale computer experiments in order to explore
the effects of potentially many multi-level design factors. The design
factors to be specified by the user, are:

• p: The number of predictors.
• n: The number of observations.
• q: The number of relevant predictors.
• m: The number of relevant components.
• P: The set of indices for the relevant components.
• ρ2: The population coefficient of determination.
• γ: A parameter defining the degree of collinearity in x.

The meaning of most of these design factors should be clear, but
some need a closer explanation.We base our discussion on the random
x regressionmodel given by Eq. (2) in Section 2.1.We assume that there
are p x-variables in total, and that q is the number of these x-variables
that have non-trivial coefficient βj ≠ 0. The number m is related to
the expansion of the regression vector β in terms of eigenvectors, ej
(for j = 1,…,p), of the x-covariance matrix Σxx:

β ¼
Xp
j¼1

η je j: ð1Þ

The number of terms in Eq. (1)may be reduced by twomechanisms:
1) Some of the ηj's may be 0; and 2) there are coinciding eigenvalues ofΣxx. Then it is enough to have one eigenvector for each space (stratum)
corresponding to one value of the eigenvalue in the sum (Eq. (1)). Letm
be the number of terms in Eq. (1)when this number is reduced asmuch
as possible.

By this mechanism there are m eigenvectors/components that are
relevant, and the positions of the relevant components is contained
in the set of indices P. Here it is assumed that the order of the compo-
nents is defined by the declining set of eigenvalues Σxx such that
λ1 ≥ λ2 ≥ … ≥ λp N 0, hence, the eigenvalues of the m relevant
components are given by λP1 NλP2 N…NλPm . In the following, and in
the simrel-package we will also refer to the set of positions for the
relevant components as relpos. If for examplem= 3 and P ¼ 2;3;10f g,
then the eigenvectors corresponding to λ2, λ3 and λ10 are relevant for
the prediction of y. In the R-package simrel we correspondingly define
the vector relpos= c(2,3,10).

In simrelwe have made the simplifying assumption that all p eigen-
values of Σxx are different and that they are decreasing exponentially as
e−γ ⋅ ( j − 1) for j=1,…,p and some positive constant γ. When γ is large,
we have very collinear x-variables.

In these specifications we may very well have p N n, but we must
have m b n. Otherwise, the only restriction is that m ≤ q ≤ p, and that P
is contained in a set Px of indices of the relevant x-variables. For exam-
ple, if the relevant components are defined by the set P ¼ 2;3;10f g,
then all sets of length q of the type Px ¼ 2;3;10;…f g of indices of
relevant predictors are allowed, where “…” denotes any other set of
variable(s) between 1 and p. In other words, this means that both the
m relevant eigenvectors and the q relevant predictor variables are
basis for the relevant space of dimension m.

In this paper and in [11] it is assumed to be known which compo-
nents are relevant. This is of course rarely the case, but in the compari-
son of prediction methods it can serve to illustrate interesting cases. In
the PLS-model of [9] and in the corresponding envelope model [13]
only the dimension m of the relevant space is assumed known.

The purpose of data simulation is to investigate some measure of
performance of one or several proposedmethods and how this depends

on parameters as those given above. Typical measures of performance
are prediction error and success rate in variable selection. It goes with-
out saying that if the performance is to be investigated under many set-
tings of the above given input parameters, the computational burden
will be quite large even for just a couple of levels of the design parame-
ters. If two levels of each of the seven parameters are chosen, a single
replicate of the design would require 27 = 128 data sets to be
analyzed. Typically several simulations are also required to better esti-
mate the expected performance under each parameter setting. A more
extensive, but reasonable, investigation could require four levels of
each parameter. The number of runs in a single replicate would then
be 47 = 16,384. Obviously this is beyond what is convenient even on
today's powerful computers. The MBR-design method provides an ele-
gant way of choosing a fractional design for multi-factor and multi-
level experiments which reduces the total number of runs dramatically,
but still provides the possibility to estimatemain effects and low-degree
interaction effects of the design parameters on the performance mea-
sure used. The simrel package can provide both the MBR-design as
well as a list of simulated data sets based on the chosen design.

The simrel package is freely available from CRAN (http://cran.
r-project.org).

2. Statistical model

2.1. Model definition

The simulation model is the general linear model:

y ¼ μy þ βt x−μxð Þ þ ϵ ð2Þ

where y is the response variable, x is a vector of p predictor variables, β
is the vector of regression coefficients and ϵ is the randomerror term as-
sumed to be distributed asN(0,σ2).We here adopt a random regression
framework as point of departure where x ~ N(μx, Σxx) independent of ϵ.
This is equivalent to

y
x

� �
� N μyx;Σyx

� �
¼ N μyμx

� �
;

σ2
y σt

xyσxy Σxx

� �� �
ð3Þ

whereσxy is the vector of covariances between the predictors and y, andΣxx is the (p× p) covariancematrix of x. According to the general theory
on the multivariate normal distribution some of the properties of this
model are:

• The noise variance and theminimumprediction error under expected
quadratic loss is:

σ2 ¼ σ2
y−σt

xyΣ−1
xx σxy

• The true value of the regression coefficient vector is

β ¼ Σ−1
xx σxy

• The population coefficient of determination is

ρ2 ¼ σt
xyΣ−1

xx σxy=σ2
y ¼ 1−

σ2

σ2
y
:

In order to simulate (y, x) data from the model in Eq. (3) we will
make use of the fact that any set of variables spanning the same
p-dimensional predictor space as x will yield the same prediction of y
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