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This work presents the weighted power–weakness ratio (wPWR), a multivariate index for multi-criteria
decision-making (MCDM) and ranking comparison. The index derives from the power–weakness ratio (PWR)
originally proposed to select the strongest winner of tournaments, which has been re-adapted in this study to
solveMCDMproblems. Key features of wPWR are: (1) its multivariate character, (2) the ability to account simul-
taneously for the strengths and weaknesses of each element, (3) the possibility to weight criteria according to
previous knowledge about the problem. In order to analyze wPWR, we selected three datasets available in scien-
tific literature. The obtained wPWR scores and rankings were compared with four well-established techniques:
Simple Average Ranking, Dominance, Reciprocal Rank Fusion and Kendall–Wei approach. Where rankings ob-
tained by other techniques were available from literature, they were also included in the analysis. Results
highlighted a correct correlation betweenwPWRand the other rankingmeasures, but also interesting differences
that support its introduction in the field of MCDM and chemometrics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-criteria decision making (MCDM) refers to making a system-
atic and rational decision of the best alternative among several candi-
dates when multiple (and often conflicting) criteria are present [1].
MCDM methods help to solve complex decision-making challenges,
which can comprise up to thousands of candidates, represented by as
many criteria. Throughout the years, many MCDM techniques have
been proposed [2], which had successful applications in numerous
fields, such as environmental management [3], risk assessment [4], en-
ergy planning [5], finance [6], health care [7], research evaluation [8]
and find useful applications in everyday life [9], as well.

A crucial aspect of multi-criteria approaches, which can strongly af-
fect the outcome of the decision process, is the relative importance
given to each criterion in determining the final decision. This is numer-
ically expressed by the so-called weights, which are determinable by
different rules [10]. When the possibility to weight the criteria on the
basis of previous knowledge is given, a more flexible and rational appli-
cation of MCDM techniques to complex problems is allowed for.

In the presentwork,we introduce a novel approach forMCDM, using
a weighted version of the power–weakness ratio (PWR), originally pro-
posed by Ramanujacharyulu in 1964 [11]. PWRwas initially thought to
select thewinner in tournaments or themost influential personwithin a
group. It is based on the idea of taking into account simultaneously the
candidate's “power” (e.g. strength of players he won against) and his

“weakness” (e.g. strength of players he lost against) to obtain the final
ranking. PWR found later applications to round robin tournaments
[12] and contestants evaluation [13]. Recently, PWRwas used to analyze
the results of the English Premier League football tournament [14] and
was proposed as journal indicator [15]. Despite the simplicity of the
method, PWR was never used for chemometric applications.

Our work stems from the idea of adapting PWR from ranking prob-
lems, where the criteria all have the same meaning (e.g. matches of a
tournament, people of a group), to MCDM problems where the criteria
can have different meanings and relevance. In this way, we obtained
what we called weighted PWR (wPWR), which is a generalized version
of the original PWR and is suitable to solve complex MCDM problems as
well as to compare rankings. Moreover, wPWR is characterized by amul-
tivariate and holistic approach, which, differently from other existing
MCDMmethods, is able to account simultaneously for all the interactions
between the alternatives, offering insights about data structure.

In this paper, after introducing wPWR, we compared it with some
well-known MCDM approaches (e.g. dominance, average ranking)
in order to investigate its potential in chemometrics and decision-
making issues.

2. Theory

2.1. Power–weakness ratio (PWR)

The power–weakness ratio (PWR) was proposed in 1964 by
Ramanujacharyulu [11] as a method to find thewinner of a tournament
or the most influential person within a group. PWR aims to locate the
most talented individual, defined as the one that won over the largest
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number of opponents (maximum “power”) and simultaneously was
defeated by few opponents (minimum “weakness”). PWR was hence
thought to capture the balance between the power and the weakness
of each individual.

Let us suppose that we are considering n individuals participating to
a tournament. The tournament table, T, is the n × n matrix of pairwise
comparisons,where each cell tij represents howmany times the individ-
ual iwon over the jth individual. This matrix encodes the power of any
player over the remaining n − 1 ones.

On the contrary, the transpose of the tournament table, TT, contains
information about theweakness of each individual. Each element of the
matrix (tij⁎) is a count of howmany times the ith player was defeated by
the jth player. The properties of both these tournament matrices have
been studied extensively elsewhere (e.g. [16,17]).

Kendall andWei [18,19] firstly proposed a method to obtain a rank-
ing from T. They suggested to raise iteratively each element of T to the
power of b (b ∈ ℕ) and then rank the players according to the obtained
row sums (Kendall–Wei scores). This allows accounting for higher
order degrees of interaction between players. In other words, for each
chosen b, the bth order of power of each player is taken into account.
Naturally, the player that possesses the largest power of order b is the
talented person at the bth stage. Thus, if we consider the limit b → ∞,
we will be able to select the most talented player above all.

Tournament matrices are asymmetrical, nonnegative and irreduc-
ible. According to the Perron–Frobenius (PF) [20] theorem, we know
that:

lim
b→∞

T
λPF

� �b

� U ¼ ePF b∈ℕ ð1Þ

where λPF is the largest eigenvalue of T, ePF is the corresponding eigen-
vector and U is a unity matrix. This theorem ensures the existence of a
positive λPF and of a unique end entrywise positive ePF.

Eq. (1) expresses the convergence of the iterative power of T to ePF
for b→∞. The elements of T can be thus ranked according to their values
of PF eigenvector, calculated as follows:

TePF ¼ λPFePF: ð2Þ

By ranking the players according to their ePF entries, those that win
more are awarded. In this way, the Kendall–Wei method (KW) awards
players that win at most.

Correspondingly, also a ranking on TT can be performed by
eigenvalue-eigenvector decomposition, as follows:

TT
PFe

�
PF ¼ λ�

PFe
�
PF ð3Þ

where ePF⁎ is the PF-eigenvector calculated on TT and λPF⁎ the corre-
sponding eigenvalue. In this case, individuals that were defeated by
few players will have small loadings values. The best player, when TT

is considered, is that suffering the fewest losses. It is important to note
that ranking the element according to λPF⁎ not necessarily gives the
same ranking as that obtained by using λPF.

The power–weakness ratio (PWR) takes into account both the infor-
mation encoded within T and TT. For each ith player it is defined as
follows:

PWRi ¼ ei
e�i

ð4Þ

where ei is the entry of the ith element on the PF-eigenvector obtain-
ed from T (ePF), while ei⁎ is that obtained from the PF-eigenvector of
TT (ePF⁎). PWR will be higher for those players that won more against
strong players and lost less against weak players; this is allowed by
the multivariate character of this index.

2.1.1. Example 1
Table 1 reports a tournament table (T1), collecting the results of five

players after the first turn (i.e. four matches for each player). Scores of
each ith row and the jth column are defined as follows: 1 if player i
defeated player j; 0 if player i was defeated by j; 0.5 if they drew the
match.

From the tournament table, the Perron–Frobenius eigenvector and
the corresponding PWR values for each player were obtained
(Table 2). The resulting ranking is P1 N P3 N P5 N P2 N P4.

In case of a second turn having the same results of the first (i.e.
[T2]ij = 2 ⋅ [T1]ij), the obtained PWR and PF-eigenvectors would be the
same as those obtained by T1, since the strength/weakness of each play-
er is the same. The only differencewould be between the eigenvalues of
T1 and T2, the latter being twice as the former (1.963 and 3.926,
respectively).

2.2. Proportional scoring for PWR

The PWR in its original formulation is sensitive to the number
of matches played by each individual. In case of unequal number of
matches played, the PWR will be biased toward those individuals that
played (and won) the largest number of games.

In this work, we propose an alternative way to calculate PWR, useful
when the number ofmatches played is not equal among the individuals.
It consists in adopting a proportional scoring, obtaining a tournament
table (TP) whose elements are scaled as follows:

tPi j ¼
ti j

ti j þ t ji
ð5Þ

When the players did not play against each other, tijP= tji
P= 0.5 is as-

sumed. In case of unequal number of matches, when TP is used instead
of T, the calculated PWR is less sensitive to the number of games played
by each individual (see Example 2). In case of equal number of matches,
the PWR calculated on TP is the same as that obtained by T.

2.2.1. Example 2
For the second example we used a historic record of a tennis tourna-

ment of 1975 between four players [13]. In this case, players did not play
the same number of matches against each other (Fig. 1). By calculating
PWR on the original data, the original table (T1) and the proportional
table (Τ1P) lead to different scores (Fig. 1c) but to the same rankings
(Fig. 1d). If the number of matches won by one player changes signifi-
cantly (Fig. 1e), the PWR calculated on T2 and the corresponding

Table 1
Tournament table T1. For each tij: 1 if the Pi player won over Pj, 0 if Pjwon, 0.5 if they drew
the match.

T1 P1 P2 P3 P4 P5

P1 0 1 1 0.5 0
P2 0 0 1 0.5 0.5
P3 0 0 0 1 1
P4 0.5 0.5 0 0 0.5
P5 1 0.5 0 0.5 0

Table 2
Results of PWR scoring on table T1. Entries of the Perron–Frobenius eigenvector calculated
on tournament table (ePF) and on its transpose (ePF⁎) for each player are also reported.

Players ePF ePF* PWR

P1 0.529 0.370 1.368
P2 0.430 0.442 0.976
P3 0.426 0.414 1.025
P4 0.364 0.535 0.714
P5 0.471 0.459 1.023
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