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A counter propagation artificial neural network (CP-ANN) was applied to classify the estrogen receptor selectiv-
ity of 94 benzopyrans. Molecules were represented by topostructural, topochemical, geometrical and quantum
chemical descriptors. A Kohonen network was used for the rational division of the dataset into training and test-
ing sets and for the selection of the variable, which was further reduced by correlation coefficient analysis for
model construction. Themost suitable network architecture of the CP-ANNwas chosen using a genetic algorithm
optimisation procedure for global optimisation and to avoid chance results caused by random initialisation. The
optimisation procedure was developed by taking into considerable account the validation of the multivariate
models. Both the percentage of correctly assigned samples for calibration and internal validation were used to
generate simultaneously predictive and not overfitted models. The resulting model had a non-error rate for
the training and testsets as high as 98.2% and 93.4%, respectively. It was shown that CP-ANN is a powerful tool
for modelling the structure–ER selectivity relationships of the compounds considered.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Estrogen receptors (ERs),members of the nuclear hormone receptor
superfamily, mediate the activity of estrogen inmany different systems,
including the reproductive, skeletal, cardiovascular, and central nervous
systems [1,2]. However, ER stimulation of some tissues can increase the
risk of cancer, particular in the female breast and uterus [3]. Thus, ER has
been a target of pharmaceutical agents for hormone replacement in
menopausal women and in those with uterine and breast cancers. In
1996, two different ER subtypes, the products of different genes, were
discovered. These subtypes are known as ERα and ERβ [2,4]. Studies
have shown that the two subtypes have different functions and distri-
butions in certain tissues [5,6]. Molecules that selectively activate ERβ
hold promise for the treatment of certain cancers, endometriosis,
inflammatory and cardiovascular diseases [7]. Additionally, these
molecules have a profound effect on brain development regulation
and estrogen-induced promotion of neurogenesis and memory, in
conjunction with reduced feminising effects [8].

Although high similarities exist in the ligand binding domain be-
tween the two subtypes, ERs constitute a serious impediment to the de-
sign and development of compounds that show high ERβ selectivity.
The mobility and plasticity of the ER ligand binding domain (LBD)
allow compounds of extraordinary structural diversity tomimic natural
estrogen agonists or antagonists to bind to the ER subtypes [9–12].
Therefore, extensive efforts are being made to develop an estrogen
receptor modulator that will selectively bind to ERβ while promoting
positive estrogen effects for therapeutic purposes.

Isoflavones, such as daidzein (1a, Fig. 1), genistein (1b, Fig. 1), and
the clover coumarin coumestrol (2), long known to be estrogenic
(i.e., phytoestrogens), were among the first compounds noted to be li-
gandswith a selective affinity for ERβ, a property shared by the daidzein
enteric metabolite (S)-equol (3) [13,14]. Isocoumarins and their ana-
logues, structurally related compounds of isoflavones, are high-affinity
ligands that show considerable selectivity for ERβ in terms of binding
affinity as well as strikingly high ERβ selectivity in terms of potency in
gene transcription assays [15]. It has been observed that these deriva-
tives bear the same functionality of benzopyrone. Furthermore, other
benzopyrone derivatives have also been reported to exhibit ERβ selec-
tivity activity [16].

The key issue in the design of new selective ER ligands is to explore
the properties of chemical structure in combinationwith its ability to in-
duce a pharmacological response as a consequence of receptor binding.
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However, because testing on in vitro assays may result in a tremendous
financial cost and waste of time, there is an urgent need for rapid and
cost-effective screening tools to detect and characterise agents with se-
lective ER subtype binding affinity. The QSAR modelling of individual
classes of chemicals has demonstrated good predictive ability and pro-
vided information concerning the mechanisms of action depending on
the relevant properties or features of the chemicals [17].

Because previously confirmed experimental compounds provide an
opportunity to understand the basis of subtype selectivity, the develop-
ment of models for predicting the subtype selectivity would allow for
the development of more potent and selective compounds for these
important pharmaceutical targets. Thus, countable QSAR models are
available for finding the subtype selective ligands through methods
such as CoMFA [9,18], ANNs [19], MLR and PLSR [20]. 3D-QSAR tech-
niques are generally considered to be the most effective means of
predicting biological activity. However, they usually require an accurate
structural superposition, which has proven to be the major bottleneck
of these techniques [21,22]. Linear QSAR methods rely on a large num-
ber samples and exhibit limitations in complex model simulations [23].
Artificial neural network algorithms constitute a more flexible class of
modelling techniques that can naturally model complex nonlinear sys-
tems in both classification and regression problems [24]. They also
have several advantages over statistical techniques, e.g., they have the
ability to continuously adapt to new data through the use of less rigid
assumptions about the underlying data distribution, they allow models
to be builtwithout the knowledge of the actualmodelling functions, and
they provide useful information about the input and output variables
that can be extracted from K-ANN and counter-propagation-ANN
(CP-ANN).

In this study, a classification model is developed based on a data set
consisting of 94 compounds within the benzopyran group. To maintain
uniformity and minimise experimental error, the dataset was obtained
from research groups, who adopted identical methodologies and exper-
imental conditions. When dealing with classification issues, CP-ANNs
are generally efficacious methods for modelling classes separated by
non-linear boundaries [25,26]. This technique is able to extract the
best molecular properties for the classification of compounds. There-
fore, the main body of this article presents the data collected with re-
spect to the structure of benzopyrans and reports the results of the
CP-ANN model for the classification of the ERβ selective character of
the compounds in the data set. Another objective of this pilot study
was to obtain the best method for fast and reliable classifications of a
94 compound data set, a large number of samples. Based on this
study, hypotheses on the possible nature of the ligand–target interac-
tion are proposed.

2. Material and methods

2.1. Dataset

The dataset used in this study was adopted from the literature [10,
15,16,27–31]. The compounds in the dataset belong to several families:
flavones, isoflavones, chalcones, flavanones, coumarins, isocoumarins,
and benzopyran (Fig. 2 and Table 1). The compounds were classified

according to their selectivity for ERβ, whichwas calculated by determin-
ing the ratio of the binding affinities, IC50 for ERβ to IC50 for ERα, of
humans in competitive radiometric binding assays. Based on the selec-
tivity values, the data set was grouped into four classes: compounds
with a selectivity ≥ 10were assigned to class 1; compounds with a selec-
tivity of 1–10 and 0.1–1were assigned to class 2 and class 3, respectively;
and compounds with a selectivity ≤ 0.1 were assigned to class 4.

2.2. Molecular descriptors

Molecular descriptors are quantitative representations of chemical
structures and structural or physicochemical properties. The PaDEL
descriptor software (National University of Singapore) was used to
calculate the 2D and 3D molecular structure descriptors, which can ad-
equately represent the structural characteristics ofmolecules [32]. Then,
various measures were taken to eliminate the descriptors that did not
contribute to the selectivity (uninformative descriptors). Overall, 228
descriptors remained after eliminating the descriptors with constant
values or mostly zero values (N90%). The descriptor values were first
autoscaled to range from zero to one, according to the following formu-
la, enabling equal weighting of each descriptor regardless of its absolute
value and maintaining the original distribution:

Xn
i j ¼

Xi j−Xj; min

Xj; max−Xj; min

where Xij and Xij
n are the non-normalised and normalised j-th ( j =

1, …,K) descriptor values for compound i (i = 1,…, N), respectively,
and Xj, min and Xj, max are the minimum and maximum values for the
j-th descriptor, respectively. Thus, for all descriptors, min(Xij

n) = 0 and
max(Xij

n) = 1.

2.3. Data set split

Date set split ensures that the training set is represented in the
model such that the predicted properties of the compounds in the test-
ing set are within the statistical limits determined by such a procedure.
This condition could be achieved by using the Kohonen ANN to divide
the data set into two classes, based on the facts: i) the components are
represented by structure descriptors; ii) the components that occupied
the same neuron have similar Euclidean distances from each other. And
in another sentence, componentswith similar structure excite the same
neuron in Kohonen map.

The Kohonen map is usually characterised as a squared toroidal
space that consists of a grid of N2 neurons, where N is the number of
neurons on each side of the squared space. Each neuron contains as
many elements (weights) as the number of input variables. Theweights
of each neuron are randomly initialised between 0 and 1 and updated
based on the input vectors (i.e., samples) a certain number of times
(called training epochs). The user must define both the number of neu-
rons and epochs to train themap. In each training step, samples are pre-
sented to the network, one at a time. For each sample (xi), the most
similar neuron (i.e., the winning neuron) is selected based on the
Euclidean distance. Then, theweights of the r-th neuron (wr) are varied
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Fig. 1. Structure of various ERβ selective compounds. 1a. daidzein, 1b. genistein, 2. coumestrol, 3. (S)-equol.
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