
Optimal designs for the methane flux in troposphere

Sándor Baran a, Kinga Sikolya a, Milan Stehlík b,c,⁎
a Faculty of Informatics, University of Debrecen, Kassai út 26, H-4028 Debrecen, Hungary
b Institut für Angewandte Statistik, Johannes Kepler University in Linz, Altenberger Straße 69, A-4040 Linz, Austria
c Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

a b s t r a c ta r t i c l e i n f o

Article history:
Received 7 September 2014
Received in revised form 2 June 2015
Accepted 10 June 2015
Available online 18 June 2015

Classification codes:
Primary 62K05
Secondary 62M30

Keywords:
Arrhenius model
Bias reduction
Filling designs
Integrated mean square prediction error
Ornstein–Uhlenbeck sheet
Tropospheric methane

The understanding ofmethane emission andmethane absorption plays a central role both in the atmosphere and
on the surface of the Earth. Several important ecological processes, e.g., ebullition of methane and its natural
microergodicity request better designs for observations in order to decrease variability in parameter estimation.
Thus, a crucial fact, before the measurements are taken, is to give an optimal design of the sites where
observations should be collected in order to stabilize the variability of estimators. In this paper we introduce a
realistic parametric model of covariance and provide theoretical and numerical results on optimal designs. For
parameter estimation D-optimality, while for prediction integrated mean square error and entropy criteria are
used. We illustrate applicability of obtained benchmark designs for increasing/measuring the efficiency of the
engineering designs for estimation ofmethane rate in various temperature ranges andunder different correlation
parameters. We show that in most situations these benchmark designs have higher efficiency.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The understanding of methane emission and methane absorption
plays a central role both in the atmosphere (for troposphere see,
e.g., [30]) and on the surface of the Earth (see, e.g., [19] regarding the
methane emissions from natural wetlands and references therein or
[13] for efficient and robust model of the methane emission from
sedge–grass marsh in South Bohemia). Several important ecological
processes, e.g., ebullition of methane and its natural microergodicity
request better designs for observations in order to decrease variability
in parameter estimation [14]. In this context by a design we mean a
set of locations where the investigated process is observed. Thus, a
crucial fact, before themeasurements are taken, is to give anoptimal de-
sign of the siteswhere observations should be collected. Rodríguez-Díaz
et al. [25] provided a comparison of filling and D-optimal designs for a
one-dimensional design variable, e.g., temperature. However, such a
model oversimplifies the important fact that variation of other variables,
e.g., rates k1 of the considered modified Arrhenius model, could disturb
the efficiency of the learning process. The latter statement is also in
agreement with common sense in physical chemistry. In this paper

the difficulties of modeling and design are treated, mainly by allowing
an Ornstein–Uhlenbeck (OU) sheet error model.

We concentrate on efficient estimation of the parameters of the
modified Arrhenius model (model popular in chemical kinetics),
which is used by Vaghjiani and Ravishankara [30] as a flux model of
methane in troposphere. This generalized exponential (GE) model can
be expressed as

Y ¼ Axμe−Bx þ ϵ ¼ η x; μ;Bð Þ þ ϵ; ð1:1Þ

where A, B, μ ∈ℝ, A, B ≥ 0, are constants and ε is a random error term. In
the case of correlated errors such a model was studied by Rodríguez-
Díaz et al. [25], however, in that work error structures were univariate
stochastic processes. In [24,25] the authors concentrated on the
Modified-Arrhenius (MA) model, which is equivalent to the GE model
through the change of variable x=1/t. Thismodel is useful for chemical
kinetic mainly because it is a generalization of Arrheniusmodel describ-
ing the influence of temperature t on the rates of chemical processes,
see, e.g., [17] for general discussion and [23] for optimal designs. How-
ever, for specific setups, for instance, long temperature ranges, Arrheni-
us model is insufficient and the MA (or GE model) appears to be the
good alternative (see for instance [10]). Other applications of model
(1.1) in chemistry are related to the transition state theory (TST) of
chemical reactions [12].
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In practical chemical kinetics two steps are taken: first the rates k1
are estimated (typically with symmetric estimated error) and then
MA is fitted to the rates, i.e.,

k1 ¼ A 1=tð Þμe−B=t þ ~ε tð Þ: ð1:2Þ

Statistically correct would be to assess both steps by one optimal
experimental planning. Rodríguez-Díaz et al. [25] concentrated on the
second phase, i.e., what is the optimal distribution of temperature for
obtaining statistically efficient estimators of trend parameters A, B, μ
and correlation parameters of the error term ~ε. In this paper we provide
designs both for rates and temperatures, and in this way substantially
generalize the previously studied model.

Correlation is the natural dependence measure fitting for elliptically
symmetric distributions (e.g., Gaussian). By taking s (this variable can
play, for example, the role of atmospheric pressure, latitude or location
of themeasuring balloon in troposphere, either vertically or horizontally)
and temperature t to be variables of covariance, our model (1.1) takes a
form of a stationary process

Y s; tð Þ ¼ k1 þ ε s; tð Þ; ð1:3Þ

where the design points are taken from a compact design spaceX ¼
½a1; b1� � ½a2; b2�, with b1 N a1 and b2 N a2, and ε(s, t), s, t∈ℝ, is a station-
ary OU sheet, that is a zero mean Gaussian process with covariance
structure

Eε s1; t1ð Þε s2; t2ð Þ ¼ ~σ2

4αβ
exp −αjs1−s2j−βjt1−t2jð Þ; ð1:4Þ

whereα N 0;β N 0; ~σ N 0.We remark that ε(s, t) can also be represented
as

ε s; tð Þ ¼ ~σ
2

ffiffiffiffiffiffiffi
αβ

p e−αs−βtW e2αs; e2βt
� �

;

where Wðs; tÞ; s; t ∈ℝ, is a standard one-dimensional Brownian sheet
[4,5]. Covariance structure (1.4) implies that for d = (d, δ), d ≥ 0, δ ≥ 0,
the variogram 2γ(d) := Var(ε(s+ d, t+ δ)− ε(s, t)) equals

2γ dð Þ ¼ ~σ2

2αβ
1−e−αd−βδ
� �

and the correlation between twomeasurements depends on the distance
through the semivariogram γ(d).

As can be visible from relation (1.2) between rates and parameters A,
μ and B of the MA model, the second variable s is missing from trend
since it is not chemically understood as driving mechanism of chemical
kinetics, however, in this context it is an environment variable.

In order to apply the usual notations of spatial modeling [16] we
introduce σ :¼ ~σ=ð2 ffiffiffiffiffiffiffi

αβ
p Þ and instead of Eq. (1.4) we investigate

Eε s1; t1ð Þε s2; t2ð Þ ¼ σ2exp −αjs1−s2j−βjt1−t2jð Þ; ð1:5Þ

where σ is considered as a nuisance parameter.
We remark that in order to reduce the length of the paper proofs of

all theorems presented here together with calculations corresponding
to Examples 2.8 and 3.5 are given in a separate Supplementary section
which is available on the website of the publisher. These details can
also be found in [6].

2. Benchmarking grid designs for the OU sheet with constant trend

In this sectionwe derive several optimal design results for the case of constant trend and regular grids resulting in a Kronecker product covariance
structure. These theoretical contributions will serve as benchmarks for optimal designs in a methane flux model. Thus we consider the stationary
process

Y s; tð Þ ¼ θþ ε s; tð Þ ð2:1Þ

with the design points taken from a compact design space X ¼ ½a1; b1� � ½a2; b2�, where b1 N a1 and b2 N a2 and ε(s, t), s, t ∈ ℝ, are a stationary
Ornstein–Uhlenbeck sheet, i.e., a zero mean Gaussian process with covariance structure (1.5).

2.1. D-optimality

As a first stepwe derive D-optimal designs, that is arrangements of design points thatmaximize the objective functionΦ(M) := det(M), whereM
is the Fisher information matrix of observations of the random field Y. This method, “plugged” from the widely developed uncorrelated setup, is
offering considerable potential for automatic implementation, although further development is needed before it can be applied routinely in practice.
Theoretical justifications of using the Fisher information for D-optimal designing under correlation can be found in [1,22,29].

We investigate grid designs of the form fðsi; t jÞ : i ¼ 1;2;…;n; j ¼ 1;2;…;mg⊂X ¼ ½a1; b1� � ½a2; b2�, n, m ≥ 2, and without loss of generality we
may assume a1 ≤ s1 b s2 b… b sn ≤ b1 and a2 ≤ t1 b t2 b… b tm ≤ b2. Usually, the grid containing the design points can be arranged arbitrary in the design
space X , but we also consider restricted D-optimality, when s1 = a1, sn = b1 and t1 = a2, tm = b2, i.e., the vertices of X are included in all designs.

2.1.1. Estimation of trend parameter only
Let us assume first that parameters α, β and σ of the covariance structure (1.5) of the OU sheet ε are given and we are interested in estimation

of the trend parameter θ. In this case the Fisher information on θ based on observations {Y(si, tj), i = 1, 2, …, n, j = 1, 2, …, m} equals
Mθ(n,m) = 1nm⊤ C−1(n,m, r)1nm, where 1k, k ∈ ℕ, denotes the column vector of ones of length k, r= (α, β)Τ, and C(n,m, r) is the covariance matrix
of the observations [22,31]. Further, let di := si + 1 − si, i = 1, 2, …, n − 1, and δj := tj + 1 − tj, j = 1, 2, …, m − 1, be the directional distances
between two adjacent design points. With the help of this representation one can prove the following theorem.

Theorem 2.1. Consider the OUmodel (2.1) with covariance structure (1.5) observed in points {(si, tj), i=1, 2,…, n, j=1, 2,…,m} and assume that
the only parameter of interest is the trend parameter θ. In this case

Mθ n;mð Þ ¼ 1þ
Xn−1

i¼1

1−pi
1þ pi

 !
1þ

Xm−1

j¼1

1−qj

1þ qj

0
@

1
A; ð2:2Þ
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