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We present an easy-to-use and freely accessible online application for the analysis of forensic glass frag-
ments. The application is browser based and takes as input .csv or .txt files containing measurements
from glass fragments obtained using a scanning electron microscope with an energy-dispersive X-ray
(SEM-EDX) spectrometer. The application was developed to (i) classify glass fragments into use-type cate-
gories (classification), and (ii) compute the evidential strength of two sets of fragments under competing
propositions (evidence evaluation). Detailed examples of how to use the application for both tasks are
given, which highlight its user-friendly interface. The suitability of the statistical methods used by the ap-
plication was checked using simulation studies, and improvements upon previous methods were found
in both tasks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Glass fragments are one of the many sources of forensic evidence.
Fragments from a broken item can be recovered from a crime scene
and sent to a forensic laboratory, where various measurements are re-
corded for analysis. Analysis of glass fragments is mainly focused on ev-
idence evaluation, which involves computing the evidential strength of
two sets of fragments (from the crime scene and from a suspect) under
two competing propositions (the prosecution and defence proposi-
tions). Measurements obtained from glass fragments can also be used
to help determine their use-type, thus providing additional information
about the type of the glass item from which the fragments obtained
from a suspect may have originated. As most glass fragments analysed
are very small, their use-type cannot always be determined by their
thickness or colour [1], and so measurements of physicochemical fea-
tures are obtained. Here, focus is placed upon chemical composition
measurements acquired from using a scanning electron microscope
with an energy-dispersive X-ray (SEM-EDX) spectrometer [1]. The ele-
mental composition data consist of the percentageweights (wt.%) of the
main elements comprising a glass fragment.

In this paper, we present an easy-to-use online application for the
purposes of (i) classifying glass fragments into use-type categories
(classification), and (ii) computing the evidential strength of two sets
of fragments under complementary propositions (evidence evaluation).
The application is easily accessible and straightforward to use for both

tasks. It is available at http://gnapier.shinyapps.io/GlassClassification
AndEvaluation/ and was developed using the shiny package, which is
part of the statistical programming language R [2].

The paper is organised as follows: Section 2 describes the database
used in the development of the application. Section 3 summarises the
statistical model, and the classification and evidence evaluation
methods developed in [3] and used by the application. Section 4 pro-
vides examples of how to use the application in the classification and
evidence evaluation tasks. Section 5 discusses how the evidence evalu-
ation results are reported. Concluding remarks are provided in
Section 6.

2. Training data

The database used in the development of the application was pro-
vided by the Institute of Forensic Research, Krakow, and it consists of
measurements obtained in an experimental setting using a scanning
electron microscope with an energy-dispersive X-ray (SEM-EDX) spec-
trometer [1]. SEM-EDX analysis produces measurements, in the form of
percentage weights (wt.%), on the main chemical elements that com-
prise the composition of a glass fragment. These are oxygen (O), sodium
(Na), magnesium (Mg), aluminium (Al), silicon (Si), potassium (K), cal-
cium (Ca) and iron (Fe). The database consists of glass fragments from
320 glass items across five use-types (26 bulbs, 94 car windows, 16
headlamps, 79 containers and 105 building windows). The chemical
compositions of four glass fragments from each item were measured
three times. Thus, the database has a hierarchical structure: three repli-
cate measurements on four fragments from each of 320 glass items of
five possible use-types.
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As the measurements obtained from SEM-EDX are compositional,
there is, as frequently happenswith compositional data, a large number
of zero measurements. Prior to model building, the percentage weights
were transformed, by taking square roots of the ratios between each el-
ementweight and theweight of oxygen. The square root transformation
was employed because it turned out to be more effective at stabilising
the variability of the ratios; see [3] for further details on the choice of
this transformation. The statistical model used by the application, and
the methods used for classification and evidence evaluation, will be de-
scribed in Section 3.

3. Methods

This section only provides a summary of themodel andmethods de-
veloped in [3], to which the reader is referred for full details.

3.1. Statistical model

A Bayesian mixed-effects model was used to account for the hierar-
chical structure of the database. The model incorporates a fixed effect
for the mean of each use-type and three random effects: at item level,
fragment level, and replicate measurement level. Denote the square
root ratios from the k-th replicate measurement on the j-th fragment
of the i-th glass item of use-type t by the p-dimensional vector ztijk. It
is then assumed that

ztijk ¼ θt þ bti þ cti j þ εtijk;
bti ∼

iidNp 0;Ω−1
t

� �
; cti j ∼

iidNp 0;Ψ−1
� �

; εtijk ∼iidNp 0;Λ−1
� �

:
ð1Þ

The fixed effect for the mean of use-type t is denoted by θt; the item
level random effect by bti; the fragment within-item random effect by
ctij; and the error at measurement level by εtijk. The random effects are
assumed to have multivariate normal distributions, with unknown pre-
cision (i.e. inverse covariance) matrices Ωt, Ψ and Λ. Then, for a glass
item z of use type T z ¼ t with JKmeasurements, the distribution of z is

zjT z ¼ t; ξ∼NJKp 1 JK⊗ θt ; Σt
� �

; ð2Þ

where ξ={θ,Ω,Ψ, Λ} collectively denotes themodel parameters and 1d
is a column vector of d 1's. The covariance matrix Σt is given by

Σt ¼ 1 JK1
0
JK

� �
⊗Ω−1

t þ I J⊗ 1K1
0
K

� �� �
⊗Ψ−1 þ I JK⊗Λ−1; ð3Þ

where Id is the d × d identity matrix.
The prior distributions placed on the fixed effects θt are multivariate

normal truncated to the positive orthant to ensure that the square root
transformed means are non-negative:

θt ∼iidNp 0;Φ−1
� �

; θt N 0; t ¼ 1;…; T:

The covariance matrix Φ−1 is fixed. The precision matrices for the
random effects have conjugate Wishart priors placed upon them:

Ωt∼Wp d1t ;Atð Þ; Ψ∼Wp d2;Bð Þ; Λ∼Wp d3;Cð Þ:

For more details on the prior and the Markov Chain Monte Carlo
(MCMC)methods used see [3]. It is worth highlighting that the applica-
tion does not need to run any MCMC as it uses the posterior draws ob-
tained from modelling the database, thus making the application quick
to use. The flip side of this point is that the application is not designed to
re-estimate the model using a different background database, possibly
available to the potential user.

As briefly mentioned in Section 2, the database contains a large pro-
portion of zeros. To handle these zeros the background database was
partitioned into subsets based on elemental configurations. The

elemental configurations denote whether an element is present
(above detection limit) or absent (below detection limit) from the com-
position of a glass item. The background database consists of glass items
with ten different elemental configurations, as shown in Fig. 1. Howev-
er, as the elements iron and potassium are responsible for the majority
of the zeros, focus is placed on the presence or absence of these two el-
ements only, thus reducing the number of configurations from ten to
four. A Bayesian hierarchical model like (1) is then estimated for each
subset of the background database for the four elemental configura-
tions. For details on how the Bayesian hierarchical models for the four
elemental configurations are brought together to form a composite
model see [3].

3.2. Classification

Being able to predict the use-type of a glass fragment can help at the
investigation stage of a legal case. To classify fragments, the application
uses the posterior predictive distribution of the use type T y of a newly
observed glass item'smeasurement vector y to be classified, conditional
on the background database D described in Section 2, and the new item
y. Let y be a vector consisting of ~K replicate measurements on each of ~J
fragments from the same glass item. The use-type probability of y is
given by

p T y ¼ tjy;D
� �

∝p T y ¼ t
� � αtm þ NtmXM

r¼1
αtr þ Ntrð Þ

�Eξm jDm
p yjT y ¼ t; Cy ¼ m; ξm
� �� �

:

ð4Þ

The first two expressions on the right-hand side of (4) derive from
modelling the counts Ntm of items in D that are of use-type t and config-
uration m. The expressions give the use-type probabilities for a newly
observed glass item of use-type T y given it has elemental configuration
Cy ¼ m, without conditioning on the actual measurements y. These use-
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Fig. 1. Plot displaying the ten elemental configurations at item level observed in the glass
database. Thepercentage of compositional zeros by element is also shown in the barplot at
the top; the percentage of data associatedwith each configuration is shown in the barplot
on the right. The configurations used inmodelling are coarser and only consider the pres-
ence and absence of Fe and K. The map between these and the ones in the plot is as fol-
lows: (Fe,K) = {C}, ðFe;KÞ ¼ fA; F;G; Jg , ðFe;KÞ ¼ fD; Eg , ðFe;KÞ ¼ fB;H; Ig , where
absence is denoted with a bar over the chemical element.
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