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Principal component analysis (PCA) has been widely applied for process monitoring and fault isolation. However,
PCA lacks physical interpretation of principal components (PCs) since each PC is a linear combination of all var-
iables, which makes the fault detection difficult. Moreover, since the PCA model is time invariant while all real
world processes are time varying and subject to disturbances. This mismatch may cause a false alarm or missed
detection. Due to these motivations, we propose an adaptive sparse PCA (ASPCA) for enhanced process monitor-
ing and fault isolation. which obtains sparse loadings by imposing a sparsity constraint on PCA. ASPCA with
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Principal component analysis sparse loadings improves the interpretation and then facilitates the isolation of faulty variables. Meanwhile,
Adaptive ASPCA enhances model adaptability by updating the loadings with the sparsity constraint modified with changes
Sparse in operating conditions. Next, a process monitoring and fault isolation strategy is presented based on ASPCA.

Qusi-T? and squared prediction error monitoring statistics are defined in the PC and residual subspaces, respec-
tively. Nonzero variables in dominant PCs with most contributions to the fault are preferentially reconstructed.
Case studies of TE process and waveform system demonstrate that the ASPCA method performs better in process
monitoring and fault isolation compared to the PCA method.

Process monitoring
Fault isolation

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent decades have seen extensive efforts in the process monitor-
ing and fault isolation driven by the growing demand for high efficiency,
reliability and process safety [1-3]. Among many methods being
proposed, principal component analysis (PCA) [4,5] has been widely
adopted and successfully used in complex processes. The essential of
PCA lies on the extraction of massive data into some less synthesize in-
dependent variables, which are termed as principal components (PCs).
The extracted PCs sequentially capture the maximum variance of pro-
cess data to guarantee minimum information loss. In detail, let an
n x m matrix X, with m process variables and n observations, denote his-
torical process data collected under normal operating conditions. With-
out loss of generality, assume that X is normalized to zero mean and unit
variance. The optimization problem of PCA can be described as follows.

p; = arg max|Xp;l|3

s.t. —]72,...71 1
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The ith PC is denoted as t; = Xpi(i = 1, 2, ..., m), and its sample
variance is \; = p; ISxp;, where p; is the loading vector and 3x = XX/
(n —1).Thefirst I (I<m) PCs represent the PC subspace, and the remain-
ing m-1 PCs span the residual subspace. Define the loadings as P =

(py D3 p;]. The matrix X can be decomposed as X = TP +E,

where the residual matrix E € R" * ™ and the score matrix T = XPER™.
To select the optimal number of PCs, cumulative percent variance
(CPV) with 85% of normal variability is widely adopted for its sim-
plicity. With PCA model established based on historical normal
data, process monitoring is achieved by comparing the monitoring
statistics against the nominal model. Typically, the T? and squared
prediction error (SPE) statistics are used in the PC and residual sub-
spaces, respectively.

PCA has a wide application for process monitoring and fault detec-
tion, but it still suffers from the interpretation and adaptability prob-
lems especially when applied to complex processes that are often time
varying and of large-scale. The interpretation problem means that
each PC is difficult to be interpreted since elements of its corresponding
loadings are typically nonzero. Approaches to address this problem
can be classified into two types. On the one hand, multi-block method
[6-9] divides the variables into conceptually meaningful blocks. The
block division requires prior process knowledge, unfortunately, which
is often unavailable or deficient in complex processes. On the other
hand, the sparse method [10-12] imposes an L;-norm constraint on
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the optimization problem of PCA to control the sparsity of loadings and
an additional tuning parameter is studied to balance between the vari-
ance of PCs and the number of nonzero elements in the loadings. PCA
and its extension methods mentioned above estimate a fixed model
and the application of a fixed model to time varying processes may
cause model adaptability problem. For the adaptability problem, one
solution is to describe pre-defined sets of faults by using supervised
learning method [13-15]. Obviously, this method is not complete
since it does not guarantee that all the possible faults are pre-defined.
A more reasonable solution is to use process measurements to update
the model dynamically [16-20].

To improve both the interpretation and the adaptability of PCA, this
work proposes an adaptive sparse PCA (ASPCA). Firstly, ASPCA obtains
sparse loadings with a small number of nonzero elements by introduc-
ing a sparsity constraint, which is defined based on actual correlation
structure of process. Since each PC is a linear combination of several var-
iables, the interpretation of model is improved. Secondly, to solve the
adaptability problem, ASPCA unitizes the current correlation structure
to update the sparsity constraint, which is carried out entirely based
on the process data and is independent of known fault data. It is of
particular interest when the process knowledge or the information of
fault data set is deficient. Thirdly, a process monitoring and fault isola-
tion strategy is presented based on ASPCA. Qusi-T? and SPE monitoring
statistics are defined in the PC and residual subspaces, respectively. The
capability of identifying faulty variables is enhanced by narrowing
down the faulty variables to nonzero variables in dominant PCs with
most contributions to the fault.

The rest of the work is organized as follows. In Section 2, the ASPCA
method is detailed, including the development of ASPCA model and a
Bayesian information criterion (BIC) for selection of the number of PCs,
in which, ASPCA based process monitoring and fault isolation schemes
are also given. This is followed by the case studies of application of
ASPCA in the TE process and the waveform system, as demonstrated in
Sections 3 and 4. Finally, Section 5 provides a concluding summary.

2. Adaptive sparse principal component analysis

In Section 2.1, the formulation of adaptive sparse principal component
analysis (ASPCA) is detailed, and a BIC-type criterion is introduced to se-
lect the number of PCs of ASPCA model. ASPCA based schemes for process
monitoring and fault isolation are proposed in Sections 2.2 and 2.3.

2.1. ASPCA model

PCA focuses on global correlation structure among all process
variables. Process changes or faults affect the structure. Fig. 1 shows a
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motivation example for the concept of ASPCA. Fig. 1a illustrates limita-
tions of PCA in two operating conditions. (i) In the normal operating
condition, variables 1 and 2 are independent. With PCA model, the ele-
ments in the loadings pq, p, are nonzero, then each PC is difficult to be
interpreted physically. (ii) Since the model built in the normal operating
condition is time-invariant, PCA cannot detect the change of operating
condition which occurs within its confidence limit. To update the
model in compliance with current operating condition, we consider
the current correlation structure to construct the ASPCA model, as
shown in Fig. 1b. This method is detailed as follows.

Assume N new measurements with m variables Z = [z1, 25, ..., zn]T €
RN >*™ js normalized using the preprocessing information of normal
dataset X. Covariance matrix of Z; . » = [z4, Z5, ..., Z;]' can be written
as 3z, = Z1:" 21+ /(T—1) = (1—1)3z,_, /T + z-/T, where 37, denotes
the covariance matrix of Z; .  _ 1 = [z1, Z5, ..., Z- — 1]". The t-test [21]
is then applied to 3, resulting in a matrix $* = [sj;c] €R™™ Each ele-
ment sj;, ranging from 0 and 1, denotes the probability of getting a cor-
relation of variables k and j when the true correlation is zero. A smaller
sﬁ-value means that the correlation of corresponding variables j and k
is more significant. With the 7th new measurement z(7 = 1, 2, ..., N),
the following ASPCA optimization problem is individually performed
for each sparse loading vector pf € R™* ! (i = 1, 2, ..., m), where 3> 0
is to tune the sparsity and the variance, and empirical evidence indicates
that the choice of 3 = 0.1 is appropriate in this work.
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where pj, p;;j are the kth and jth elements of loading vector p;, respec-
tively. To minimize the second term, each p;;p; jsjz-value should be
equal to zero or near zero. In other words, if sj;—value is sufficiently
large, at least one of p; and p;; is shrunken to zero via a trade-off of var-
iance in the first term. Otherwise if sﬁ—value is closer to zero, elements

pix and p;; are less subject to the constraint. Thus, with ASPCA model,
elements in the loadings are zeros if corresponding variables are
independent, and values of the elements are increased with the degree
of correlation between its corresponding variables. Each loading vector
grasps intrinsic local information of nonzero variables. As a result, the
whole process is divided into a diversity of different local correlation
sub-structures. In each sub-structure, the selected subset of variables
is relative strongly correlated. Note that variables may overlap in
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Fig. 1.PCA (a) and ASPCA (b) on data with variables 1 and 2 in two operating conditions. The variables are independent in the normal operating condition (O), but correlated in the current

operating condition (@).
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