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a b s t r a c t

The necessary condition is derived for optimal control with multiple priors which are mutually singular.
The tool we use is the theory of G-expectation.
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1. Introduction

The necessary condition for optimal control, also called stochas-
tic maximum principle, is one of the important topics in con-
trol theory. A number of studies have been devoted to this topic.
Peng [1] proved a general maximumprinciple for forward stochas-
tic control system using second order duality technique to over-
come the difficulty that the control variable entering the diffusion
coefficient. Peng [2] firstly studied optimal control for a kind of for-
ward–backward stochastic control system which appears in eco-
nomics and mathematical finance. Then many works focus on the
stochastic maximum principle, see among many others, Li and
Tang [3], Wu [4], Cadenillas [5] and references therein.

All the aboveworks consider the stochastic maximumprinciple
under a single linear probability space. The uncertain volatility
model [6,7] demonstrates that sometimes we have to work under
a set of probability measures, even they are mutually singular to
each other. For example, the super hedging problem introduces a
sublinear pricing operator which can be seen as the supremum of
a set of linear expectations. We now consider a stochastic control
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system (2.1) and minimize the cost functional (2.2) in which
E[·|Ft ] : L1G(FT ) → L1G(Ft) is the G-expectation [8, Chapter III
Section 2], a kind of sublinear expectation possessing the following
properties:
(i) Monotonicity: If X ≥ Y , then E[X |Ft ] ≥ E[Y |Ft ].
(ii) Constant preserving: E[c|Ft ] = c, ∀c ∈ R.
(iii) Sub-additivity: E[X + Y |Ft ] ≤ E[X |Ft ] + E[Y |Ft ].
(iv) Positive homogeneity: E[λX] = λE[X], ∀λ ≥ 0.
(v) If E[X |Ft ] = −E[−X |Ft ], for some t , then E[X + Y |Ft ] =

E[X |Ft ] + E[Y |Ft ].
(vi) E[X + η|Ft ] = E[X |Ft ] + η, η ∈ L1G(Ft).

Hu and Peng [9] proved the representation of sublinear expecta-
tion:E [·] = supP∈P EP [·] , P is a set of linear probabilitywhich are
mutually singular. A property holds ‘‘quasi-surely’’ (q.s.) if it holds
outside a polar set A, i.e., P(A) = 0, ∀P ∈ P . Let (B(t))t≥0 be a G-
Brownianmotion [8, Chapter III Definition 1.2] underE. It is shown
thatB (·) is amartingale under every P ∈ P [10,11] and there exists
a unique adapted process (σ P

t ) such that σ 2
≤

σ P
t

2
≤ σ 2, a.e. t,

P-a.s.1 and

Bt =

 t

0
σ P
s dW

P
s , ∀t ≥ 0, P-a.s.

where σ 2
:= E[⟨B⟩1], σ 2

:= −E[− ⟨B⟩1], (W P
t ) is a standard EP -

Brownian motion, ⟨·⟩· denotes the quadratic variance of a process.

1 a.e.: almost everywhere; a.s.: almost surely.
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Therefore an interesting phenomenon comes up: the quadratic
variance of (Bt) under any P ∈ P ,

⟨B⟩t =

 t

0

σ P
s

2 ds, ∀t ≥ 0, P-a.s.

is no longer a deterministic function of time t . It is random.
One of the most distinctions between G-stochastic analysis and
Itô’s calculus comes here: Nt :=

 t
0 αsd ⟨B⟩s −

 t
0 2G (αs) ds is a

G-martingale while (−Nt) is not. The related function G : R → R
is defined by

G(a) =
1
2

sup
σ 2≤γ ≤σ 2

{γ a} =
1
2
[σ 2a+

− σ 2a−
], a ∈ R.

It is easy to prove that u(t, x) = E[ϕ(x + Bt)] is the solution of the
following G-heat equation

∂tu(t, x) − G

D2
xu


= 0, u(0, x) = ϕ(x).

Itô’s integral with respect to (Bt) [8], Itô’s formula [12] andmartin-
gale representation [10,13] are all well established in this frame-
work. See [8] for an overview of G-stochastic analysis.

Definition 1.1. (Xt) is a G-martingale if Xs = E [Xt |Fs] , s ≤ t .
If moreover E [Xt |Fs] = −E [−Xt |Fs], we call (Xt) a symmetric
G-martingale.

Itô’s integral


·

0 ZsdBs is a symmetric G-martingale. ⟨B⟩t − σ 2t
is a G-martingale but not symmetric. For a partition of [0, T ]: 0 =

t0 < t1 < · · · < tN = T and p ≥ 1, we set
M

p,0
G (0, T ): the collection of processes ηt(ω) =

N−1
j=0 ξj(ω) ·

1[tj,tj+1)(t), where ξj ∈ LpG(Ωtj), j = 0, 1, . . . ,N;
MP

G(0, T ): the completion of M
p,0
G (0, T ) under norm ∥η∥M =

E
 T

0 |ηt |
pdt
 1

p
;

HP
G (0, T ): the completion of M

p,0
G (0, T ) under norm ∥η∥H =

E
 T

0 |ηt |
2dt
 p

2
 1

p

. It is easy to prove thatH2
G(0, T ) = M2

G(0, T ).

We have the following Martingale Representation theorem
from Song [13].

Proposition 1.1. Let σ > 0. For ξ ∈ Lβ

G(Ω) with some β > 1,
G-martingale Xt = E[ξ |Ft ], t ∈ [0, T ] has the following unique
decomposition:

Xt = X0 +

 t

0
ZsdBs − Kt , q.s. (1.1)

where (Zt) ∈ Hα
G (0, T ), KT ∈ Lα

G(Ω) for any 1 ≤ α < β and (Kt)
is a continuous, increasing process with K0 = 0 and (−Kt) being a
G-martingale.

2. Stochastic maximum principle with multiple priors

2.1. Statement of the problem

We consider one dimensional control system. There are no
essential difficulties for the multidimensional one.

Let b, σ , l and h be such that
b (t, x, v) , σ (t, x, v) , l (t, x, v) : [0, T ] × R × R → R,
h(x) : R → R.
We assume

(H1) b, σ , l and h are continuous in [0, T ] × R × R and they are
continuously differentiable with respect to (x, v).

(H2) The derivatives of b, σ are bounded.
(H3) The derivatives of l are bounded by C(1 + |x| + |v|) and the

derivative of h is bounded by C(1 + |x|).

Let U be a nonempty convex subset of R. We define the admis-
sible controls set

U =

v(·) ∈ M2

G(0, T )|v(t) ∈ U, a.e., q.s.

.

Obviously, U is also a convex set. For any given admissible con-
trol v(·) ∈ U and initial state x0 ∈ R, we consider the following
stochastic control system:

dx(t) = b (t, x(t), v(t)) dt + σ (t, x(t), v(t)) dB(t),
t ∈ [0, T ], (2.1)

x(0) = 0,

where B (·) is a G-Brownian motion. It is just a consequence of
Peng [8], Ch.V that there is a unique solution x (·) ∈ M2

G(0, T ) to
Eq. (2.1) on [0, T ], T > 0 is a fixed time. x (·) is called the state
variable or trajectory. The optimal control problem is to minimize
the following cost functional over U:

J(v(·)) = E
 T

0
l (t, x(t), v(t)) dt + h(x(T ))


, (2.2)

inf
v(·)∈U

J(v(·)), (2.3)

whereE is theG-expectation, a sublinear expectation generated by
a set of singular probabilitymeasures. The classical optimal control
deals with one single probability measure. Now we have to work
under a set of probability measures which are singular with each
other. The main motivation of this kind of optimal control is the
uncertain volatility model proposed by [6].

2.2. Variational equation and variational inequality

In order to derive the maximum principle, we use the classical
‘‘convex variationmethod’’ introduced by Bensoussan [14]. Let u(·)
be an optimal control and x (·) be the corresponding trajectory. Let
v(·) be such that u(·) + v(·) ∈ U. Since U is convex, then for any
ρ ∈ [0, 1] , uρ(·) = u(·) + ρv(·) is also in U. We denote xρ(·) the
corresponding trajectory.

Let η (·) be the solution of the following variational equation:

dη(t) = (bx (t, x(t), u(t)) η(t) + bv (t, x(t), u(t)) v(t)) dt
+ (σx (t, x(t), u(t)) η(t)
+ σv (t, x(t), u(t)) v(t)) dB(t), (2.4)

η(0) = 0.

By condition (H2) and Peng [8], we can find a unique solution
η (·) ∈ M2

G(0, T ) to Eq. (2.4). Set

x̃ρ(t) = ρ−1(xρ(t) − x(t)) − η(t).

We have the following convergence result:

Lemma 2.1. Let (H1) and (H2) hold. Then

lim
ρ↓0

sup
t∈[0,T ]

E
x̃ρ(t)

2 = 0.

Proof. We denote, for simplicity, the subscript t is omitted,

Aρ :=

 1

0
bx

x + λρ


x̃ρ + η


, u + λρv


dλ,

G1ρ :=

Aρ − bx (x, u)


η +

 1

0
[bv (x, u + λρv) − bv (x, u)] dλ,

Bρ :=

 1

0
σx

x + λρ


x̃ρ + η


, u + λρv


dλ,

G2ρ :=

Bρ − σx (x, u)


η +

 1

0
[σv (x, u + λρv) − σv (x, u)] dλ.
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