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This paper studies the adaptive consensus problem of networked mechanical systems with time-
varying delay and jointly-connected topologies. Two different consensus protocols are proposed. First,
we present an adaptive consensus protocol for the connected switching topologies. Based on graph
theory, Lyapunov stability theory and switching control theory, the stability of the proposed algorithm
is demonstrated. Then we investigate the problem under the more general jointly-connected topologies,
and with concurrent time-varying communication delay. The proposed consensus protocol consists of
two parts: one is for the connected agents which contains the current states disagreement among them
and the other is designed for the isolated agents which contains the states difference between the current
and past. A distinctive feature of this work is to address the consensus control problem of mechanical
systems with unknown parameters, time-varying delay and switching topologies in a unified theoretical
framework. Numerical simulation is provided to demonstrate the effectiveness of the obtained results.
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1. Introduction

Recently, the consensus problem of multi-agent systems (MAS)
has attracted considerable attention due to its broad applications
in formation control of satellite clusters, cooperative control of
unmanned aerial vehicles, distributed optimization of multiple
robotic systems, etc. [1-4]. Broadly speaking, consensus means
that networked agents reach an agreement regarding certain quan-
tity of interests, which might be the attitude in multi-spacecraft
alignment, the heading angle of flocking, or the average in dis-
tributed computation.

Two topics on the consensus problem have been extensively
studied. One is to address the effects of time-delay which is usually
inevitable within communication networks. Results on time delays
of MAS include [2,5-7], to name just a few. Most of the existing
results are under the assumption of constant communication
delays. Unfortunately, in practical implementations, these as-
sumptions are not always satisfied. In fact, communication
over networks imposes restrictive constraints that include time-
varying, unknown and possibly discontinuous communication
delays. The other topic is on the effects of the switching commu-
nication topology which is actually very commonplace in practi-
cal applications due to communication failures [8,9]. Indeed, the
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communication topology plays an essential role on the stability
of the networked multiple systems, especially when it is discon-
nected at some time instants. The aforementioned results mainly
concentrate on dealing with one of these two topics separately.
However, in practical applications, these two factors may coexist,
thus it is worthwhile to study the two problems together. Although
there have been some results on this issue (see [10-14] for exam-
ple), most of those studies focus on the linear first-order or second-
order integrator multi-agent systems.

On the other hand, the past few years have witnessed a bur-
geoning interest on synchronization (or coordination) control of
nonlinear systems, especially the multiple mechanical systems
whose dynamics can be modeled by Euler-Lagrange equations
(see [15-26], etc.). For example, [17,18] have studied the dynamic
tracking of networked Euler-Lagrange systems with only partial
agents communicating with the leader, yet they are all based upon
the assumption that there is no time delay within the commu-
nication topology. The time delay effects are studied in [19-22]
from the perspectives of the passivity property of Euler-Lagrange
systems, where the communication topologies are required to be
fixed. In addition, the time delay effects are also studied using the
Lyapunov theory in [23,24] and the small gain theory in [25], yet
the communication topology is still restricted to be fixed. Indeed,
due to the inherent nonlinearity of the Euler-Lagrange system, the
consensus problem is more challenging for the switching topol-
ogy compared with its fixed topology counterpart. Therefore, the
study on switching topologies of multiple mechanical systems is
rare with an exception of [26,27]. In [26], the results are under the
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assumption that the switching topologies are balanced and con-
nected, while in [27], the consensus problem is studied under
connected switching network but time delay is not taken into
consideration. Furthermore, neither [27] nor [26] considers the
jointly-connected topologies, let alone time-varying delay to-
gether with the jointly-connected topologies.

Motivated by this, in this paper, we study the consensus algo-
rithms of networked mechanical systems with time-varying de-
lay and switching topologies. In particular, we concentrate on
mechanical systems whose dynamics are modeled by Euler-
Lagrange equations. Since jointly-connected topologies have
disconnected nodes, it is more challenging to study consen-
sus problems on jointly-connected topologies than on connected
topologies, especially when time delays are involved. A distinc-
tive feature of this paper is that it comprehensively studies the
distributed consensus of Euler-Lagrange systems with coupling
time-varying delay, jointly-connected topologies and unknown
parameters at the same time. To the best of our knowledge, there
is still no result which comprehensively considers these factors to-
gether.

This paper is organized as follows. In Section 2, we present the
problem formulation and background. The consensus problem of
multi-agent mechanical systems with unknown parameters and
connected switching topologies is studied in Section 3. In Section 4,
we further develop an adaptive consensus protocol which allows
for time-varying delay, jointly-connected switching topologies and
parametric uncertainties. Simulation results are given in Section 5.
Finally, we draw our conclusions in Section 6.

Notation. R = (—o0, 00), An{A} and Ay {A} represent the min-
imum and maximum eigenvalues of matrix A, respectively. ||A||
is the norm of the matrix A. |x| stands for the Euclidean norm
for the of vector x € R". For any function f : R>g — R" the
Loo-norm is defined as ||f ||, = sup;~¢ If ()|, and the L,-norm as
ILf ||§ = f0°° If (t)|? dt. The Lo and L, spaces are defined as the sets
{f: Roo > R": [fll <oo}and {f : Rsg — R": |f]l, < o0},
respectively.

2. Problem formulation and background

2.1. System dynamics

We consider a team of n networked mechanical systems
(henceforth called agents) indexed by the set £ = {1, ..., n}. The
ith system is described by Euler-Lagrange equation
M;(q:)Gi + Gi(qi, 4)qi + Gi(qi) = Ti(t) (M
where q; € R™ is the vector of generalized coordinates,
M;(gi) € R™™ is the symmetric positive-definite inertial matrix,
Gi(qi, g)qi € R™ is the vector of Coriolis and centrifugal torques,
Gi(q;) is the gravitational torques and t;(t) is the vector of torques
produced by the actuators associated with the ith system. Before
proceeding, we give some fundamental properties for system (1)
that will be extensively exploited in the following [28].

Property 1. The matrix M;(q;) is positive and there exist positive
constants A, and Ay such that

Aml < Mi(q) < Aml. (2)

Property 2. For any differentiable vector ¢; € R™, the Lagrangian
dynamics are linearly parameterizable which gives that

Mi(@) & + Gi(qi, 48 + Gi(qn) = Yi(qi, i, &iv 5O (3)
where ©; € R¥ is a constant vector of parameters whose elements
include the link masses, moments of inertial, etc., and Y;(-) € R™*¥ is
the matrix of known functions of the generalized coordinates and their
higher derivatives.

Property 3. Under an appropriate definition of the matrix Ci(q;, qi),
the matrix M;(q;)) — 2Ci(qi, qi) is skew-symmetric, i.e., for a given
vector r € R™, it follows that

(W@ - 2Gi(ai, @) )r = 0. (4)

Property 4. Consider a mechanical system of the form (1). If q;, g; €
Lo, the Coriolis matrix satisfies |Ci(q;, Gi)| < kc|qil-

2.2. Graph theory

The information exchange between agents in a multi-agent
system can be modeled using graphs. Let § = {7V, &, 4} be an
graph of order n with the set of nodes V(4) = {v1, va, ..., vy}, the
setofedges & C V xV,and a weighted adjacency matrix A = {a;}
with nonnegative adjacency elements a;. A graph is undirected if
edges (i,j) € & are an unordered pair. In this paper, we assume
the graph is undirected. The node indices belong to a finite index
setd ={1,2,...,n}.Anedge of § isdenoted by ¢; = (v;, v;) and it
is said to be incoming with respect to v; and outgoing with respect
to v;. For an undirected graph, Vi,j € J, if (v;, v)) € &(4), then
(vj, vi) € €(4). The set of neighbors of node v; is the set of all nodes
which communicate to v;, denoted by &; = {v; € V : (v, v)) € €}.
The graph adjacency matrix 4 = [a;], A € R™", is such that
aj = 1ife; € € and a; = 0ifg; ¢ &. The in-degree of vertex
v; is denoted by d" = Y ! a;, and the out-degree of vertex v; is
denoted by d? = Y " a;. If d?* = d™" for all V(§), then the graph
is said to be balanced. D = {d;} € R™" is called the in-degree or
out-degree given as d; = d" or d; = d™,d; = 0and i # j.

To describe the switching connected topologies, we need to
consider all the possible graphs {§, : p € £}, where & is an
index set for all graphs defined on node set {1, 2, ..., n}. Define
a switching signal o(t) : [0, 00) +— & whose value at time ¢t is
the index of the graph at time t. Note that all adjacency matrix
A4 and the Laplacian matrix £ are time varying. Suppose that
there is an infinite sequence of bounded, contiguous time-intervals
[ti, tir1),i = 0,1, ... and there is a dwell time y > 0, such that
tiyi—t=y.

To model the jointly-connected topologies, we consider an
infinite sequence of continuous, bounded, non-overlapping time
intervals [ty, tyr1), k=0,1,2,.. . withtg =0, Ty < tgy1 — 6 <T
for some constants Ty and T. Assume that each interval [y, tiy1) is
composed of the following non-overlapping subintervals

0 .1 i—1 j me—1 ,.m
(75 70 PP - ) TU [ 7))

with t,? = ty and t,T ¥ = t;4, for some nonnegative integer my.
The topology switches at time instants ¢, t}, . .., t,* which satisfy
t — t{f > y (y is a positive constant) and 0 < j < my,
such that during each subinterval [t,’:l, t;), the interconnection
topology () does not change. Note that in each interval [ty, ty41),
Go( is permitted to be disconnected. The graphs are said to be
jointly connected across the time interval [t,t + T], T > 0 if the
union of graphs {G,) : s € [t, t + T]} is connected [8].

2.3. Instrumental lemmas

Lemma 1 ([29]). Define €(t) = x4(t) — x(t), X, (t) = x4(t) + Ie(t),
rt) = x(t) — x(t) = €é(t) + Ie(t), where x4(t), x(t) € R™,
I' € R™™M is a positive definite matrix. Let € (t) = h(t) xr(t), where
x denotes the convolution product and h(t) = L~'(H(s)) with H(s)
being an m x m strictly proper, exponentially stable transfer function,
L~ denotes the inverse transformation of the Laplace manipulator.
Then, r € L, implies that € € 1Ly N Ly, € € Lo, € is continuous
and |e(t)] — 0ast — oo. Besides, if |r(t)] — 0ast — oo, then
|€(t)] — O.
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