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The standard PLSR is presented from a geometric point of view consisting of two projections. In the first, the
scores are obtained after an oblique projection of the spectra onto the loadings. In the second, the vector of
response values is projected orthogonally onto the scores. A metric is introduced for the oblique projection
and a new algorithm for the calculation of the loadings into the variables space is proposed. This work also
develops a new parameter, a vector, whose different values lead to different regression models with their
own abilities of prediction; one of them is the exact form of the standard PLSR. Two applications are
described to illustrate the performance of the proposed method called VODKA regression, which is also a
way to build least square regressions by introducing additional knowledge into the models.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many current analytical methods are based on spectroscopic tech-
niques such as near infrared, mid infrared or Raman spectroscopy. The
data generated are sets of observations, e.g. spectra acquired from
several samples, and sets of the corresponding analytical results
obtained using generally time-consuming analytical techniques. The
observations form a first matrix. The analytical results form a second
matrix containing the quantitative amounts of one or several com-
pounds of interest, or response variables. Response variables are
predicted using the observations associated to a calibration method.
This is an important goal for the development of on-line, fast and
non-destructive analytical methods. The most popular of the proposed
methods is partial least square regression or projection to latent struc-
tures regression (PLSR). PLSR is a linear indirect calibration method.
Terms of PLSR-1 and PLSR-2 are respectively associatedwith the predic-
tion of one or several response variables. This work addresses only
PLSR-1, called PLSR hereafter for simplification.

The non linear iterative partial least squares (NIPALS) algorithm
was proposed by H. Wold for principal component analysis (PCA)

calculations [1]. Modifications of this algorithm led H. and S. Wold
and H. Martens to the first PLSR algorithm [2], here called standard
PLSR [3,4] to avoid confusion with NIPALS for PCA. Other algorithms
have since been proposed, including non orthogonalized scores
PLSR by Martens [5,6] and SIMPLS by De Jong [3]. The goal of these
algorithms is to give results close to the standard PLSR, at least for
PLSR-1. As a consequence, Andersson [7] compared the respective
performances of nine PLSR algorithms for the two following criteria:
speed and numerical stability. The standard PLSR belonged to the four
most stable algorithms, and thus confirmed its status as a reference.

The standard PLSR has been presented fromdifferent points of view,
e.g. an application of theHeisenberg uncertainty principle [8], statistical
modeling [9], its geometry [4], or the algorithm itself [2,7,10,11] with
the calculation of the different parameters: loadings P and c, weights
W, scores T. The various properties of PLSR have been reviewed else-
where and are beyond the scope of this article. Our aim is to show
that the same algorithm can be written in such a way that only two
parameters are necessary: ametricM and the loadings P; the geometric
properties are highlighted.

VODKA regressions, a new family of regression methods, are
derived from this new presentation of standard PLSR. The vector
r=X′y is considered as a parameter, which can be replaced by any
other vector of the same dimension for the calculation of the loadings.
Each value of r is associated with a different regression model whose
accuracy depends strongly on a relevant choice for r. Several ap-
proaches are proposed for the choice of r and two applications illus-
trate the proposed method.
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2. Theory

The theory is divided into three parts: definitions and notations; a
rewriting of standard PLSR including a newalgorithm for the calculation
of the loadings; and the proposal of a new regression method.

2.1. Definitions and notations

Vectors are noted in bold lowercase, all matrices, but projectors,
in bold uppercase, projectors in calligraphic, scalars in normal up-
percase and variables in normal characters. A spectrum is repre-
sented as a column vector, but several spectra form the rows of a
matrix, e.g. in X or XG. Vectors generated by calculations form the
columns of the matrices which include them, e.g. P orW. The trans-
posed forms of vector m and matrix M are respectively noted m′

and M′. Terms of metric (also used for pseudo-metric), orthogonal
and oblique projectors, antiprojectors, and the main notations are
given in Table B.1.

The linear model is written in terms of matrices and vectors:

yraw ¼ 1Nb0 þ Xrawbraw þ eraw ð1Þ

where (Xraw, yraw) is the raw dataset containing the values of the
explanatory variables and the explained variable for N observations,
b0 the offset, braw the regression vector and eraw the error. The prob-
lem of the offset can be fixed by adding a column of ones to Xraw [6].
Moreover, if other pretreatments are necessary, e.g. centering,
smoothing, orthogonal projection, they should be applied previously
to the raw dataset. They yield the calibration dataset (X, y) with X
of dimensions (N×Q), N observations of Q variables. Eq. (1) can be
simplified to:

y ¼ Xbþ e

The aim of a regression is to estimate the vector b̂ that minimizes
the residual error.

2.2. A new presentation of the standard PLSR algorithm

The standard PLSR algorithm is described in Appendix A. Weights
W, and loadings P and c are calculated then used to build the
regression vector of b-coefficients b̂, see Eq. (A.6). PLSR decomposes
a matrix X into matrices T, P and a residual matrix E such that: X=
TP′+E=XU+E [12], where XU represents the information from X
which is useful for the prediction of y, the column vectors of P form
a basis of the useful space, T contains the scores of the observations
in this basis and E is the error. Various properties of standard-PLSR
are reported in Appendix A.2. Let M be the Moore-Penrose
pseudo-inverse of X′X, and P be the oblique projector with an
inner product M onto the space spanned by the columns of P. A
new expression of XU is obtained with the expression of T from
property 5:

XU ¼ TP′ ¼ XMP P′MP
� �−1

P′ ¼ XP′ ð2Þ

The geometry of PLSR is highlighted: the useful information
extracted from X is obtained by a M-oblique projection of X onto
the loadings P. As PLSR is also an orthogonal projection (or regres-
sion) of the reference values y onto the scores T [4], a new expres-
sion of b̂ is obtained (see property 6):

b̂ ¼ MP P′MP
� �−1

P′MX′y ð3Þ

¼ P′MX′y
¼ MPX′y

ð4Þ

The calculation of M is straightforward with the function pinv of
Matlab or Scilab, based on a singular value decomposition of X′X;
this is however slow, so faster methods have been proposed for
large and rank-deficient matrices, e.g. geninv [13] and CGS-MPi
[14]. Thus, P remains the only parameter to be calculated to obtain
a PLSR model. According to Eq. (A.5), the deflation of X at step i is
performed into RN , so the calculation of the loadings pi implies suc-
cessive steps intoRN and intoRQ . However, property 7 and Eq. (A.9)
show that the deflation of X at step i can be performed only into RQ

following:

X1:i ¼ T ⊥
1:iX ¼ XP′⊥

1:i

So the steps into RN are no longer necessary, and it becomes pos-
sible to rewrite the calculation of the loadings of standard PLSR into
RQ only and also independently of the parameters T, W and c. An
algorithm is thereby obtained and described in Appendix B.

Once the model is built, for a new observation xv; ŷv is deduced
from Eq. (3):

ŷv ¼ x′
vMP P′MP

� �−1
P′MX′y ¼ x′

vP
′MX′y ¼ x′U

vMX′y ð5Þ

Thus the prediction is a two-step process. The first step is an
M-oblique projection of xv onto P, yielding the useful part
xU
v ¼ Pxv; the scores of the observations associated to the basis

{p1, p2, …pA} are: tv=x′vMP(P′MP)−1. In the second step, ŷv is
the M-inner product between xvU and X′y. The term X′y appears in
the regression coefficients of PLSR, PCR and OLSR [4,6]. However,
it also has a particular place in PLSR when building the loadings,
as seen in Appendix B. This allows us to develop the following
method.

2.3. VODKA regression, an outcome of the new presentation of standard
PLSR

PLSR aims at determining scores that maximize (t′iy)2 under the
condition: ‖wi‖=1 [12]. Using property 3 and the normalization of
ti in the proposed algorithm, this constraint can be switched from
RN to RQ and expressed as: maximizing p′iMX′y under the condition
p′iMpi=1. The question is: is X′y really the best vector? If, as sug-
gested by Helland [15], PLSR models can theoretically be improved,
there may be another vector rwhich is more representative of the rel-
evant information from X that explains y.

This issue has been discussed in contexts other than PLSR. The
net analyte signal (NAS) [16] is the most condensed spectral infor-
mation about the compound to be predicted; it is also the basis of
the principle of direct calibration, e.g. [17]. Two definitions of the
NAS have been proposed [18]: (1) the NAS for a component is the
part of its pure spectrum which is orthogonal to the pure spectra of
the other constituents; (2) the NAS is the part of the gross spectrum
that is useful for prediction. According to the first definition, if the
pure spectrum k of the compound to be quantified is known, and
if all other influences have been characterized as spectra or loadings
and merged into the matrix D, the NAS can be estimated: snas=
(IQ-D(D′D)−1D′)k. The regression coefficients obtained from
PLSR or other regression models are also estimations of the NAS
[18]. Moreover, in certain conditions, the regression vector of
PLSR can be the NAS exactly [9]. Therefore, if a good approximation
of the NAS can be obtained with additional information, the NAS
can be used as the value of r.
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