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Rational functions appear in many theoretical formulae in chemistry, chemical engineering, and biochemistry.
However, rational functions have not been used much in empirical multivariate modeling. This study is a contin-
uation to developments in[1] and [3]. In this study, the focus is on empirical modeling using rational function in a
case study of estimating the kinetics of esterification of ethanol with acetic acid. The results are compared with
those obtained by traditional mechanistic modeling using nonlinear parameter estimation. The motivation for
the approach is to find good models with less effort. Currently, developing and testing different mechanistic
kinetic models are time consuming, and in spite of the effort, the performance of the resulting candidate models
can be virtually the same. An alternative approach is to use empirical generic models. In this study, this approach
is shown to require less effort than the mechanistic modeling approach.

The proposed method is based on modeling the reaction rate by an empirical second order rational function.
The rational function is first transformed into a linear form which is used to estimate the unknown model
parameters using ridge regression. After this, the linear model is back-transformed into the original rational
form which is then used for calculating both the fitted values and the predicted values. Finally, the estimated
rational function for the rate expression is used to solve numerically the system of differential equations
corresponding to the reaction kinetics.

The data is obtained from [4], and it consists of several batch reactions between ethanol and acetic acid with
different initial concentrations. Six of the eight batches are used for model estimation, and two of these are
omitted for model validation (prediction).

The results are very promising, and both the fitted and the predicted values are comparable to those obtained
using traditional mechanistic modeling with nonlinear parameter estimation. It also seems that the method is
able to take into account the non-ideal behavior of the reactants. The proposed method offers a flexible and
fast method for developing kinetic models for reactor design and control, even in cases where the kinetic rate
expression is not known by theory.
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1. Introduction

Almost all theoretically known dependencies in physics, chemistry
and biology are nonlinear. Although linear models are often useful
local approximations, there are cases where taking nonlinearity into
account is unavoidable. The most common forms of nonlinearity in
chemistry, or in biological systems, are exponential, logarithmic, logistic
and rational functional forms. Many of them can be put into linear
regression form using some linearizing transformation. For rational
functions, the ‘natural’ linearizing transformation is to multiply both
sides by the denominator, and rearrange the terms. However, this
form is inapplicable for prediction because the new predictor terms
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contain the dependent variable. In principle, this problem is easily over-
come by carrying out the regression using the linearized form, using the
original rational form for predictions. Unfortunately, this well-known
trick works poorly in cases that contain several independent (explana-
tory) variables because of extreme collinearity. A natural solution to the
collinearity problem is to use ridge regression, or some other
constrained regression. This approach is called rational function ridge
regression (RRR).

Rational type of nonlinearities is very common in chemistry, es-
pecially in catalytic reactions, and rational function ridge regression
has already been shown to be a potential method for nonlinear em-
pirical (soft) modeling, demonstrated in [1-3]. The applications test-
ed in [1-3] include multivariate calibration, QSAR (quantitative
structure-activity relationship) studies, calibration of sensory data
and RSM (response surface modeling). These studies also include
comparisons to other nonlinear empirical methods.

The objectives of this study are: 1) to continue testing the appli-
cability of RRR in applications between hard and soft modeling, and
2) to develop a fast method for kinetic modeling.
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2. Theory

A rational function has the form
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Prn(x,Bp) and Qn(x,Bq) are polynomials of the independent variables
given in the vector x. The vectors Bp and 3, contain the coefficients
of the polynomials P and Q of orders m and n, typically m<2 and
n<2.

Direct estimation of the parameters of rational functions requires
iterative nonlinear estimation algorithms, where finding good initial
estimates may be problematic. Our approach is based on a linearizing
transformation and ridge regression (or some other constrained re-
gression), called RRR.

Because any fraction can be reduced by canceling out any con-
stant, we can assume that the intercept term in the denominator
Qu(x,Bq) is 1. Let us denote such a polynomial by

Qn =1 +Qn (X7BQ)> (2)

i.e. the intercept PBgo in Q,(x, Bq) is zero. Multiplying both sides of
Eq. (1) by the denominator gives

¥ = Pr(%,Bp)—yQa (X, Bq)- G3)

This is a linear model with respect to the polynomial coefficients
Brand B, and the regressor terms are the powers in P and the powers
of Q multiplied by —y. The common factor y in Q terms makes the
problem strongly, and unavoidably collinear and inapplicable for pre-
diction of new observations. Thus, the estimation must be carried out
using some other method that OLS (ordinary least squares) regression,
and predictions have to be calculated using the back-transformed
model, i.e. the original rational function model.

Several alternative methods can be used in estimation of the poly-
nomial coefficients, including ridge regression, PLSR (partial least
squares regression), LASSO, LAR (least angle regression) and ENET
(elastic nets). LASSO and LAR are L; norm minimization based
methods, and ENET is a combination of L; norm and L, norm minimi-
zation. The last three alternatives in RRR have recently been studied
in [2] in a case of multivariate calibration of spectral measurements.
In contrast, the current study is restricted to ridge regression only.

After obtaining the estimates of Bp and Bq, say Bp and BQ, the lin-
earized model is back-transformed into the original form
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The fitted values and future predictions are calculated using this
formula. To be more explicit, let us consider the simplest case of
first order polynomials for two variables:

by +b1x; + byxy
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The corresponding linear model is

Y =bg +byX; + byxy +dyx1y + dyX,y, (6)
where d;= —c;i=1,2. The predicted and fitted values can be calcu-
lated by
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where b; and d; are the estimates for the bs and ds after ridge regres-
sion. Consequently ¢; = —di and the denominator of Eq. (7) could be
expressed as 1+ ¢;x; + C,X, in concordance with Eq. (5).

Of course, with orders higher than one, one choice for the denom-
inator could be a polynomial without linear terms, which is a com-
mon type of a model in heterogeneous catalysis, for example. In
high dimensional problems, polynomials with interaction terms will
typically introduce too many unknown parameters. Full quadratic
polynomials are feasible when the number of independent variables
is small enough, or the data has been compressed, or some variable
selection scheme has been employed.

There are several alternatives in choosing the ridge penalty pa-
rameter. The chosen ones given below use either the coefficient of de-
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terminationR* = 1— - -, where the y;s stand for fitted values
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and y stands for the mean values of the measured responses, or the
cross-validated coefficient of determination which is defined similar-

ly, but so that y;s stand for cross-validatory predicted values.

1) Choose the penalty parameter value that gives the smallest
Q%-value in the linear regression step (Q7), i.e. in estimating the
parameters of the transformed model.

2) Choose the penalty parameter value that gives the largest R*-value
in using the back-transformed model (R3;).

3) Choose the penalty parameter value that gives the largest
Q%-value in using the back-transformed model (Q3;).

Alternatives 1 and 2 are fast if deleted residuals are used for
leave-one-out cross-validation. The estimation is simply repeated
using the chosen candidate values for the penalty parameter. Inter-
estingly, the R3; and Q7 often have maximal values with approximate-
ly the same penalty parameter values.

Since the linearized model cannot be used for true predictions, the
advantage of the computational efficiency of the leave-one-out
cross-validation cannot be applied in assessing the true predictive
power of using the back-transformed model. Consequently, R*- or
Q?-values are not the same for linearly and non-linearly (i.e. using the
back-transformed model) estimated response values. For this reason,
cross-validation should also be carried out for the nonlinearly calculat-
ed estimates. Nonlinear cross-validation, unlike linear leave-one-out
cross-validation, cannot be completed without iteration, and conse-
quently it is highly computer-intensive. However, experience has
shown that the ridge penalty parameter value that maximizes the
Q%-value of the linear regression step is also quite often very close to
the penalty parameter value of maximal Q3-value in cross-validating
the back-transformed model.

The ridge principle can also be used for variable selection by iter-
atively suppressing down estimates of coefficients of small absolute
value. This principle of iterative suppression can be carried out in
many ways, by using penalties that are inversely proportional to the
absolute values of the regression coefficients, for example. In this ap-
proach, a preset tolerance for the absolute values of the regression co-
efficients is chosen. All coefficients whose absolute values are below
this tolerance receive an iteratively increasing ridge penalty. Some
preliminary results of applying this technique will be presented.

3. Experimental

As a case study, this investigation utilizes the same data set as in
[4]. The data consists of 22 batches of esterification of ethanol and
acetic acid at different temperatures, and with different initial con-
centrations and different amounts of the catalyst.

In [4], 18 batches were used to compare traditional mechanistic
modeling to implicit calibration, i.e. for nonlinear kinetic parameter
estimation using spectra without explicit calibration with measure
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