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Among the methods of variable selection for Quantitative Structure-Property Relationship (QSPR) studies,
one of the currently available alternatives is the Ordered Predictors Selection (OPS). Using this algorithm
and descriptors obtained using only Simplified Molecular Input Line Entry System (SMILES) strings in
the free web server Parameter Client, a QSPR study with a data set of 28 alkyl (1-phenylsulfonyl)
cycloalkane-carboxylates and six different endpoints of environmental importance were developed and com-
Keywords: pared with other works. The comparison with models previously published was performed only with the in-
QSAR ternal validation, and four of the six new models proved to be superior. However, the six new models also
presented high quality for external predictions, were robust and showed no chance correlation. The predicted

Alkyl(1-phenylsulfonyl) cycloalkane-

carboxylate endpoints of the six models were within the applicability domain. Thus, it can be concluded that the OPS al-
Toxicity gorithm was able to generate QSA(P)R models with high statistical quality for predicting of physicochemical
LogKow and toxicological endpoints, thus showing its potential for development of predictive models of environmen-
LogKoc tal interest.
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1. Introduction

Quantitative structure-activity and structure-property relation-
ship (QSAR and QSPR, or QSA(P)R) studies, which correlate and pre-
dict physical-chemical and biological properties of environmental,
industrial, and medicinal importance, from molecular descriptors ex-
perimentally or theoretically derived, currently play an important
role in the effective assessment of organic compounds [1-4]. The ulti-
mate role of the QSA(P)R theory is to suggest mathematical models
for estimating endpoints of interest, especially when the experimen-
tal values are not available for some reason [1,5]. Currently, this ap-
proach is an important support tool for aiding the rational drug
discovery [6-8] as well as for environmental and regulatory purposes
[9-13]. In June 1st 2007 it came into force in the European Communi-
ty the new legislation of Registration, Evaluation, Authorization, and
Restriction of Chemicals (REACH), which considers, among other
topics, the utility of validated QSA(P)R models as a preliminary tool
for calculating the properties of chemicals [14,15].

The determination of experimental properties (for instance, LogKy,,)
are normally time consuming, expensive, and labor intensive [16]. In
some cases, they are not available because the compound does not yet
exist (for instance, for a new drug or pesticide in development) [17].
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Thus, theoretical molecular descriptors are usually necessary [1,5,18].
But, nowadays, it is possible to calculate thousands of molecular de-
scriptors for a single molecule that may be highly correlated to each
other or irrelevant to the target endpoint. Therefore, the problem in
selecting those which are the most representatives for the endpoint
under study should be seriously considered.

The step of variable selection in a QSA(P)R study is a way to
identify reduced subsets of molecular descriptors that in fact are use-
ful to reproduce the observed values of an endpoint by an accurate
regression model. This point has become important for several re-
searches of interest for areas that manipulate data sets with a large
number of independent variables, just as currently are the QSA(P)R
studies. The use of a good method for variable selection helps
obtaining the necessary subset to build the optimal mathematical
model for the prediction of a particular endpoint and, therefore, sim-
ple, robust, and more easily interpretable models [19,20].

Several variable selection methods have been developed since the
early years of chemometrics. Some of the most used are the stepwise
regression method (SWR), genetic algorithms (GA), cluster signifi-
cant analysis (CSA), K-nearest neighbor (KNN), among others
[18,19]. Recently, Tebfilo et al. [20] developed the Ordered Predictors
Selection (OPS), a new algorithm of variable selection, useful for
constructing multivariate mathematical models. This method has
produced good results in QSA(P)R [21-24] and other multivariate
studies [25,26] involving large amounts of data.
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The aromatic sulfones constitute a class of chemicals extensively
used by the pharmaceuticals, agrochemicals, petrochemical and met-
allurgical industries [27]. Therefore, the introduction of these com-
pounds into the environment as well as its ecological and
toxicological consequences have been increasing interest from re-
search groups. Over the last years, several QSA(P)R works with
these compounds were developed. These studies were based in
some physical and toxicological endpoints, and were developed
using, in most cases, the Linear Solvation Energy Relationships
(LSER) solvatochromic parameters or related theoretical descriptors
(TSLER) [2,3,28-35]. Yin et al. [36] also developed a QSAR study
using quantum-mechanical descriptors calculated by semi-empirical
approaches. Other studies indicate the use of E-state indices
[37-39], molecular shape index [38], and molecular connectivity indi-
ces [37,40].

In this study, the objective is to obtain QSA(P)R models with high
internal and external statistical quality for the most studied end-
points (three physical and three toxicological) in the previously
cited papers (and available in databases or printed copies) for the
28 alkyl(1-phenylsulphonyl)-cycloalkane-carboxilates (Fig. 1 and
Supplementary Material, Fig. S1), using the OPS algorithm [20] and
only descriptors derived by Simplified Molecular Input Line Entry
System (SMILES) strings [41].

2. Methodology
2.1. Data set, training set, test set, and obtainment of descriptors

In this study, six endpoints were used. The values of LogK,,,
(logarithm of 1-octanol/water partition coefficient), LogK,. (loga-
rithm of adsorption coefficient for soil and sediments) and LogS (log-
arithm of water solubility) were obtained in Chen et al. [30]; the
toxicity against Daphnia magna straus (inverse logarithm of medium
effective immobilization concentration, — LogECsg_paphnia» and inverse
logarithm of median lethal concentration, — LogLCso_paphnia) in Wang
et al. [2]; and the toxicity against Photobacterium phosphoreum (in-
verse logarithm of concentration that causes a 50% inhibition of biolu-
minescence after a 15-minute exposure, —LogECsg_protobact) in Chen
and Wang [34]. The values of each endpoint and the SMILES strings
of each compound (28) of the data set are presented in Table 1.

The structures of all compounds were built in the JME Editor
(http://www.molinspiration.com/jme) and the SMILES strings were
obtained. These strings were used to generate 717 descriptors, divid-
ed into eleven categories: (i) walk and path counts; (ii) topological
charge index; (iii) 2D autocorrelations; (iv) Burden eigenvalues;
(v) edge adjacency indices; (vi) topological descriptors; (vii) molecu-
lar properties; (viii) information indices; (ix) connectivity indices;
(x) eigenvalue-based indices; and (xi) E-state indices. All descriptors
were obtained through the online programs E-Dragon 1.0 and
ETState, using the interface Parameter Client (http://www.vcclab.
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Fig. 1. Basic structure of the alkyl(1-phenylsulphonyl)-cycloalkane-carboxilates
studied.

org/lab/pclient). Only these descriptors were used in order to obtain
them quickly and easily. Furthermore, the JME Editor and Parameter
Client are free and available on the Internet. Its functioning on any op-
erating system depends only on the availability of the Java Runtime
Environment (http://www.java.com) and an internet browser that
supports this programming language. These characteristics facilitate
the reproduction of the results and the effective use of the proposed
models by researchers and companies that develop and use alkyl
(1-phenylsulfonyl) cycloalkane-carboxylates derivatives.

The invariant and quasi invariant descriptors, the descriptors with
absent values (represented by the code “999”), and the atom type
count descriptors used in the calculations of E-state indices were man-
ually removed. The descriptors ALogP (Ghose-Crippen octanol-water
partition coefficient), AlogP? (Squared Ghose-Crippen octanol-water
partition coefficient), MlogP (Moriguchi octanol-water partition coef-
ficient) and MLogP? (Squared Moriguchi octanol-water partition coef-
ficient), calculated in the “molecular properties” option, were also
removed in the study with LogK,,,. For the other endpoints, the LogK,,,
was utilized as the molecular descriptor related with hydrophobicity.
The next step was to eliminate the descriptors with absolute Pearson
correlation coefficient (|r|) lower than 0.3, leaving 433 descriptors
for LogKow, 435 for LogK,., 452 for LogS, 443 for —LogECso_paphniar
444 for — LogLCsg_paphnia and 442 for — LogECsg_photobac- These matri-
ces were subjected to variable selection algorithm with the OPS.

As the data set is relatively small (twenty-two derivatives for
LogK,. and twenty-eight for the other), it used the approach
suggested by Ferreira and Kiralj [43] to ensure that the division of
the data set into training and test sets did not undermine the study,
leading to non-representative models of the structures under study.
Initially, an auxiliary model with the complete dataset was obtained.
After internal validation, the dataset was divided into training set,
generating the real model, and test set, always formed by five com-
pounds, which is the minimum recommended in the literature.
Then, the real model was used to predict the endpoint of the test
set. For its use to be possible, it had to present an internal statistic
as close as possible to the auxiliary model [44].

Subsequently, the data set was manually split in a training set (17
compounds for LogK,. study and 23 for the others) and in test sets
(five compounds for all endpoints). This step was performed with
the aid of a Principal Component Analysis (PCA), a classification
method that is able to represent the pattern of similarity between
data [42,45]. In this case, if the dependent variables of the twenty-
two compounds common to each endpoint (Table 1) present similar
behavior. As the first Principal Component (PC1) cumulated the
greater amount of information (86.232%), the similarity between
the values of five endpoints (LogKow, LogK,e, —L0gECsg_paphnia:
—LogLCs0_paphnia and — LOgECsy_photobact) 1S €videnced. This result
may be visualized in the loading plot (Fig. 2). Thus, the same test set
(compounds 3, 9, 16, 22 and 25) was chosen for these five endpoints.
On the other hand, as the LogS,, showed different information, other
data set (6,12, 13, 20 and 27) was selected. Both test sets were selected
to cover, in the most appropriate way, the range of variation of each
endpoint. The PCA analysis was performed in the Pirouette 4 (http://
www.infometrix.com).

2.2. Chemometric analysis

2.2.1. OPS algorithm and PLS regression method

OPS [20] is an iterative algorithm for variable selection, that uses
Partial Least Squares (PLS) [46] for building models. For the algorithm
to work, it is initially necessary to determine the maximum number
of latent variables (LV) that the user wishes to be explored to obtain
the models (the maximum value is equal to the number of columns of
the data matrix) and the number of LV which the user wishes to be
used for building the models (the maximum value is equal to the
number of LV which will be explored). After this, the models are
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