
Systems & Control Letters 61 (2012) 1157–1167

Contents lists available at SciVerse ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Quantization effects on synchronized motion of teams of mobile agents with
second-order dynamics
Hui Liu a, Ming Cao a,∗, Claudio De Persis a,b

a Faculty of Mathematics and Natural Sciences, ITM, University of Groningen, The Netherlands
b Department of Computer, Control and Management Engineering A. Ruberti, Sapienza University of Rome, Italy

a r t i c l e i n f o

Article history:
Received 12 December 2011
Received in revised form
8 July 2012
Accepted 27 August 2012
Available online 10 November 2012

Keywords:
Multi-agent system
Quantization
Second-order dynamics
Consensus-type scheme
Nonsmooth analysis

a b s t r a c t

For a team of mobile agents governed by second-order dynamics, this paper studies how different
quantizers affect the performances of consensus-type schemes to achieve synchronized collectivemotion.
It is shown that when different types of quantizers are used for the exchange of relative position and
velocity information between neighboring agents, different collective behaviors appear. Under the chosen
logarithmic quantizers and with symmetric neighbor relationships, we prove that the agents’ velocities
and positions get synchronized asymptotically. We show that under the chosen symmetric uniform
quantizers and with symmetric neighbor relationships, the agents’ velocities converge to the same value
asymptotically while the differences of their positions converge to a bounded set. We also show that
when the uniform quantizers are not symmetric, the agents’ velocities may grow unboundedly. Through
simulations we present richer undesirable system behaviors when different logarithmic and uniform
quantizers are used. Such different quantization effects underscore the necessity for a careful selection of
quantization strategies, especially for multi-agent systems with higher-order agent dynamics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recently significant research efforts have been made to study
how to coordinate the motion of teams of mobile autonomous
agents [1]. One popular approach is to use consensus-type
algorithms to guide a team of agents to coincide with one another
moving with the same velocity under the conditions that the
relative position and/or relative velocity information is shared
locally among agents and no agent is isolated from the rest
of the team [2–4]. Since agents might be constrained by their
limited sensing capabilities, they sometimes cannot acquire their
neighboring agents’ information through realtime sensing, but rely
on digital communication to obtain the needed information in its
quantized form. This has motivated a growing number of research
activities studying how to design effective coordination control
strategies using quantized information [5–12].

Agents governed by second-order dynamics as double-integr-
ators are widely used for modeling mobile autonomous agents
especially when the research focus is on the collective team
dynamics instead of detailed individual agent dynamics [13].
Multi-agent systems with second-order agent dynamics can have
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dramatically different collective behavior than those with first-
order agent dynamics even when agents are coupled together in
similarmanners [14]. However,while various quantized consensus
schemes have been proposed for multi-agent systems with first-
order dynamics [7,10], less is known about the quantization ef-
fects on the consensus-type algorithms for motion coordination
in systems with higher-order dynamics. Recently some interest-
ing sufficient and/or necessary conditions have been constructed
for synchronizing coupled double integratorswithout quantization
[13,14]. In a more recent paper [15], higher-order passive nonlin-
ear systems under quantized measurements are considered, but
the coordination task considered there is different and its results
cannot be applied directly to the problem considered here.

In this paper, we utilize the control laws that have been used
in [13], but study their performances when quantized information
is used. Then a new set of tools including new forms of Lyapunov
functions are developed accordingly to deal with the challenges in
analysis for the discontinuity on the right-hand side of the system
equations as a result of quantization. We find in this paper that
when the chosen logarithmic quantizers are used in the proposed
coordination scheme and the neighbor relationships are symmet-
ric, the agents’ velocities and positions get synchronized asymp-
totically.When the chosen symmetric uniform quantizers are used
instead, the agents’ velocities converge to the same value asymp-
totically, while the differences of the agents’ positions converge to
a bounded set as time goes to infinity; in comparison, when the
uniform quantizers are asymmetric, the agents’ velocities might
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keep increasing and become unbounded.We also indicate through
simulations that richer undesirable system behavior may appear
under the chosen uniform and logarithmic quantizers, e.g. the
agents’ positions may never become the same. Some of such unde-
sirable behaviors are inherently associated with the higher-order
agent dynamics. Hence, it is emphasized thatwhen choosing quan-
tization schemes for agents with higher-order dynamics, in or-
der to achieve desiredmotion coordination, appropriate quantizers
have to be picked carefully.

The rest of the paper is organized as follows. In Section 2, the
quantized control for motion synchronization is discussed for sys-
tems of agents governed by second-order dynamics and the uni-
form and logarithmic quantizers are defined. We review briefly in
Section 3 the tools from nonsmooth analysis that we use. The anal-
ysis for systems with the chosen logarithmic and uniform quan-
tizers are discussed in Sections 4 and 5 respectively. We provide
some additional simulation results in Section 6 for the case when
the neighbor relationships are not symmetric.

2. Motion coordination for agents with second-order dynamics

Weconsider a teamofN > 0 autonomous agents, each ofwhich
is governed by the following second-order dynamics
ṙi = vi
v̇i = ui i = 1, . . . ,N,

(1)

where ri, vi ∈ Rn denote the position and the velocity of agent i
respectively and ui is agent i’s control input. The goal for designing
distributed control laws ui is to synchronize the motions of the
N agents in such a way that the velocities and positions of all
the agents become the same asymptotically and thus they move
together as a single entity. Such a motion coordination problem
has been studied before [13,14], and the solution that has been
proposed is to use a consensus-type scheme

ui = −


j∈N1(i)

(ri − rj) −


j∈N2(i)

(vi − vj), (2)

where N1(i) (resp. N2(i)) denotes the set of agent i’s neighbors in
the graphG1 (resp.G2) that describes the neighbor relationships in
terms of whether the position (resp. velocity) information can be
exchanged between a pair of agents.Weuse aij and bij, 1 ≤ i, j ≤ N ,
to denote the elements of the adjacency matrices [16] of G1 and
G2 respectively; in other words, aij (resp. bij) equals one if j is
a neighbor of i in G1 (resp. G2) and zero otherwise. And we set
aii = 0, bii = 0 for all i = 1, . . . ,N .

In the sequel, we assume that G1 and G2 are undirected and
fixed. Note that in the context of distributed control, each agent
only knows the relative position or velocity information, i.e. no
global coordinate system is available. It has been shown in [13] that
when G1 and G2 are connected, the control law (2) can achieve the
goal effectively.

In this paper, we consider the scenario where for each agent,
the relative position and velocity information of its neighbors is
acquired through digital communication. Hence, if we continue
to use the consensus-type coordination strategy (2), we have the
control signals in the following form

ui = −


j∈N1(i)

q(ri − rj) −


j∈N2(i)

q(vi − vj), (3)

where q : Rn
→ Rn denotes the vector quantizer of choice.

Here we have assumed that all the agents have been installed with
identical quantizers.

Remark 1. In the literature, when quantizers are applied to agents
with first-order dynamics, different information has been quan-
tized. For example, in [6] the quantization takes place after the rel-
ative positions have been summed up, namely

ui = −q

 
j∈N1(i)

(ri − rj)


;

in [10] the absolute position information in some global coordinate
system is quantized, namely

ui = −


j∈N1(i)


q(ri) − q(rj)


.

In [17], the relative position information is quantized in a similar
way for what we have done in (3) for second-order agent dynam-
ics. But the coordination task is different, and thus the control goal
is different.

In this paper, we consider the following three types of quan-
tizers. The symmetric uniform quantizer we consider is a map qu :

R → R such that

qu(x) = δu


x
δu


+

1
2


, (4)

where δu is a positive number and ⌊a⌋, a ∈ R, denotes the greatest
integer that is less than or equal to a. The uniform quantizer (4) is
similar to those used in [8,17].

The asymmetric uniform quantizer we consider [18] is a map
q∗
u : R → R such that

q∗

u(x) = δu


x
δu


. (5)

The logarithmic quantizer we use [8] is an odd map ql : R → R
such that

ql(x) =

equ(ln x) when x > 0;
0 when x = 0;
−equ(ln(−x)) when x < 0.

(6)

Note that for the uniform quantizers, the quantization error is
always bounded by δu, namely |qu(x) − x| ≤ δu or |q∗

u(x) − x| ≤ δu
for all x ∈ R. Note also that for the logarithmic quantizer, it holds
that

x ql(x) ≥ 0, for all x ∈ R, (7)

and the equality sign holds if and only if x = 0; the quantization
error for the logarithmic quantizer is bounded by |ql(x)−x| ≤ δl |x|,
where the parameter δl is determined by δl = 1 − e−δu .

The above definitions of scalar-valued uniform and logarithmic
quantizers can be easily generalized to their counterparts of
vector-valued quantizers. Take the logarithmic quantizer as an
example. For any x =


x1 . . . xn

T
∈ Rn, we define the

vector logarithmic quantizer ql(·) : Rn
→ Rn to be ql(x)

∆
=

ql(x1) . . . ql(xn)
T . One can easily check that ⟨x, ql(x)⟩ ≥ 0

and the equality sign holds if and only if x = 0.
The main result of the paper is to show different quantization

effects on the performances of the consensus-type coordination
algorithms (3). Because of the discontinuity of the quantized
signals, we will make use of nonsmooth analysis of differential
equations to solve our problem. We give some preliminaries on
nonsmooth analysis in the next section.

3. Preliminaries on nonsmooth analysis

For a differential equation

ẋ(t) = X(x(t)) (8)

whereX : Rd
→ Rd ismeasurable but discontinuous, the existence

of a continuously differentiable solution is not guaranteed. In this
paper, we adopt the Filippov solution [19].
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