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Standard spectroscopic practice involves the measurements of replicate spectra (designated as s) for each
sample where these replicates are co-added in order to reduce random noise by a factor of

ffiffi
s

p
. However,

when systematic or structured noise are present, due to instrument or sample upset conditions, or subject
motion, this practice tends to degrade and distort spectral bands. When co-adding multiple replicate mea-
surements for single samples, such distortion tends to cause biased calibration coefficients and larger predic-
tion errors, resulting in loss of analytical accuracy. In this work a simple automated procedure is presented
and aimed to circumvent the above mentioned concern. Multiple replicate spectra of a sample are correlated
with the median of the entire set of replicate spectra and then ranked by similarity based on the correlation of
each spectrum to this ‘reference’ median spectrum. A tunable ‘binning size’ parameter is chosen by dividing
the set of ranked, correlated replicate spectra into sub-spectral groups. The highest correlation spectra then
co-added with the median to yield what is termed here as a single ‘ideal’ spectrum. These steps are repeated
for each set of sample measurements and performed for both calibration and validation data sets before
modeling or prediction. Results from experiments show a substantial decrease in both standard errors of pre-
diction and bias in comparison to the classical replicate spectra co-averaging approach highlights the effec-
tiveness of the proposed method.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Near-Infrared spectroscopy (NIRS) is a well-known and established
technique widely applied in both noninvasive and invasive modes to
measure the biochemical composition and morphological properties of
different biological samples, such as urine, serum, and whole blood glu-
cose [1–4]. Other NIRS application used for pathology purposes including
measurement of tissues, such as cancer, brain, skin, prostate, etc. have
also been reported [5–8]. NIRS combined with a multivariate regression
analysis approach, such as partial least-squares (PLS) regression [9,10],
can produce precise and informative diagnostic information [11–14].
Consequentially, various NIRS modalities and advanced processing tech-
niques have been developed by multiple scientific research groups over
the years, each with its own merits and limitations [2,15,16]. One of the
popular forms of NIRS is based on a Michelson interferometer known as
a Fourier transform spectrometer (FTS) [17–19]. In order to minimize
noise during sample measurements occurring from scan-to-scan by
the moveable mirror in FTS, multiple single-scans spectra are summed

(i.e., co-added) together into a single averaged spectrum. In this tech-
nique the noise can be suppressed in proportion to the square root of
the number of replicate spectra. Since this simple summation operation
constitutes an ensemble averaged over many different scans, having
both “poor” quality and “good” quality spectral measurements (see an
example in Fig. 1), an artifact spectral shape can be created, having no
basis in the true spectral characteristics of real samples. Therefore, it is
essential to reduce or eliminate the effect of such conditions in order to
build the optimum predictive model. In addition, in some applications
the scanning time is a critical issue, and prolonged scanning times seri-
ously impede the spectral quality.

InNIRSmeasurementswebroadly categorize two basic types of noise:
random (white) noise and systematic (system or subject) noise. During
algorithmdevelopment two basic assumptions regarding the characteris-
tic of measurement noise types were conducted. First, the random noise,
which follows a

ffiffi
s

p
noise reduction phenomenon, is uncorrelated to ana-

lyte signal (where s is the number of replicate scans or spectral measure-
ments co-added for each sample). Second, systematic variation in a
measurement system or sample presentation (e.g., changes in tempera-
ture, flow, sample scattering, instrument vibration, etc.) can be correlated
or uncorrelated to the analyte signal. Therefore, an improved signal-
to-noise ratio can be obtained by reducing the impact of structured
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noise by using a method to select out “poor” quality spectra, while
selecting “good” quality spectra for co-addition. One such statistically
appropriatemethod to accomplish this is to compute the statistical me-
dian spectrum from a set of replicate scans; to select those replicate
spectra closest in feature shape to the median spectrum for each sam-
ple; and then co-add these selected replicates into the final measure-
ment spectrum. Different methods have been suggested by several
research groups to copewith the influence of systematic and structured
noise during spectroscopic measurements [20–28]. A common feature
of these methods is the designing appropriate mathematical filters
and the use of pre-processing techniques to reduce the noise variance
structure prior to replicate scan averaging. However, even when these
methods are applied successfully, low signal-to-noise signals can still
seriously affect the final analytical performance. We note here that the
proper de-noising of signals obtained from replicate scans is essential.

In this work, we report on a new preprocessing hybrid algorithm
which is applied at the single scan-level, referred to as Ideal Spectrum
Adaptive Filtering (ISAF), which was created to circumvent the above
mentioned structured noise concerns. The proposed hybrid algorithm
makes use of the combination of spectral correlation, spectral binning,
and “Lucky Imaging” concepts developed for astronomy [29–31]. In
lucky imaging, a technique which has revolutionized astronomical im-
aging using land based telescopes, short-exposure photographs least
affected by telescope temperature and atmospheric refraction varia-
tions are shifted to a common center point on an image plane, and then
co-added into a single average image [32–34] based on signal-to-noise
characteristics; the best images are selected from a series of images
and then co-added to result in much higher resolution and quality im-
ages. Land based telescopes have been improved by three orders of
magnitude in image quality. The ISAF algorithm is intended to mimic
“Lucky Imaging” and includes five main steps for each physical sample
as follows: First, the median of the entire set of replicate spectra is
calculated (this is accomplished as the median of each absorbance at
eachwavenumber). Second, a cross-correlation between each individu-
al replicate spectrum compared to the calculated median is computed
(each replicate has a correlation value as compared to themedian spec-
trum). Third, individual replicate scans (spectra) are ranked by correla-
tion to the median. Fourth, the ranked replicate sets are divided into
sub-spectral groups based on a specific classification criterion. Finally,
the highest correlation spectra of the first group are selected and co-
added with the computed median to result in one averaged ‘ideal’
spectrum per sample. These steps are then repeated for each set of indi-
vidual samples for the calibration, and prediction process. This ISAF
approach was tested on blood sample spectra with a clinical range of
physiologic blood glucose and hematocrit levels.

2. Materials and methods

2.1. Instrumentation

We use a Fourier transform near-infrared (FT-NIR) spectrometer
work at the spectral range of 4000–8000 cm−1 with a resolution of
32 cm−1. It consists of a uniform blackbody light source (~1035 °C),
beam-splitter and compensator plates, fixed and moveable corner-
cube retro-reflectors, and an InGaAs PIN photodiode detector. The active
mirror is continuously scanning in rate of 7.67 Hz. The blood mixture
and background (Saline, NaCl 0.9%) samples were pumped through a
flow cell with a nominal pathlength of 1 mm, controlled at a set-point
of 34 °C during measurements.

2.2. Procedures

Basic blood components of plasma and red blood cells were blended
to produce multiple sample matrices to provide a diverse spectral pop-
ulation of samples. Each blood sample containing native glucose and a
specific hematocrit (HCT) level is spiked with a certain glucose concen-
tration, using the same volume dilution, at least 10 minutes before the
NIR measurement. This sample is then gently mixed during that time
to ensure uniform dispersion of glucose and RBCs within the sample.
Approximately 5.0 mL of blood sample is placed in a 30 mL conical
tube in which 4.5 mL is used to complete a draw for each NIR measure-
ment and another 0.5 mL is used for measuring HCT. Reference hemat-
ocrit values are measured using the HemoCue glucose analyzer, while
whole blood and plasma glucose values on two identical YSI glucose an-
alyzers. The glucose values collected from the YSI and HemoCue are
then analyzed and compared to spectra and predicted concentration
values (mg/dL) obtained from the FT-NIR instruments.

2.3. NIR measurements

Background spectra of saline solution were collected before and
after blood sample measurement for 30 seconds to account for varia-
tion in instrument noise and drift profiles. On the other hand, blood
measurements were obtained for 60 seconds. Glucose samples were
in the physiologic concentration range 30–500 mg/dL with varied he-
matocrit level range from 24% to 48%. These samples were measured
using variations in temperature, flow rate and flowcell pathlength nor-
mally experienced during routine measurement operations, as outlined
in Table 1. Therefore, an increased number of outliers were expected in
addition to those generated from instrument measurement variation,
and variation in the sample composition. The sample setwas represented
by 579 samples at nominal conditions; 162 samples at flow rate var-
iations (equally divided as minimum and maximum); 162 samples at
pathlength variation, and 157 samples at varied temperature ranges. Ap-
proximately one third of the samples were randomly selected and mea-
suredwith each of the three instruments (~353 each). This experimental
design represented the greatest possible variation in sampling andmea-
surement effects which still remained within the measurement system

Fig. 1. Example of ~460 replicate Intensity spectra for a single sample, demonstrating a
range of “poor” and “good” quality measurements. If one uses conventional co-averaging
over the entire set of replicate scans, an artificial or synthetic spectral shape is created hav-
ing no basis in true spectral characteristics of the sample.

Table 1
Background variation obtained during experiments.

Type of variation Value

Low flow 0.45 ml/min
Nominal flow 0.50 ml/min
High flow 0.55 ml/min
Small pathlength 0.95 mm
Nominal pathlength 1.00 mm
Large pathlength 1.05 mm
Low temperature 15 °C
Nominal temperature 25 °C
High temperature 35 °C
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