
Systems & Control Letters 61 (2012) 1260–1268

Contents lists available at SciVerse ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

On conditional decomposability
Jan Komenda a, Tomáš Masopust a,∗, Jan H. van Schuppen b

a Institute of Mathematics, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno, Czech Republic
b CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 8 December 2011
Received in revised form
20 March 2012
Accepted 24 July 2012
Available online 12 November 2012

Keywords:
Discrete-event system
Coordination control
Conditional decomposability

a b s t r a c t

The requirement of a language to be conditionally decomposable is imposed on a specification language
in the coordination supervisory control framework of discrete-event systems. In this paper, we present
a polynomial-time algorithm for verification whether a language is conditionally decomposable with re-
spect to given alphabets. Moreover, we also present a polynomial-time algorithm to extend the common
alphabet so that the language becomes conditionally decomposable. A relationship of conditional decom-
posability to nonblockingness of modular discrete-event systems in general settings is also discussed in
this paper. It is shown that conditional decomposability is a weaker condition than nonblockingness.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the Ramadge–Wonham supervisory control framework,
discrete-event systems are represented by deterministic finite au-
tomata. Given a specification language (usually also represented
by a deterministic finite automaton), the aim of supervisory con-
trol is to construct a supervisor so that the closed-loop system sat-
isfies the specification [1]. The theory is widely developed for the
case where the system (plant) is monolithic. However, large en-
gineering systems are typically constructed compositionally as a
collection of many small components (subsystems) that are inter-
connected by rules; for instance, using a synchronous product or a
communication protocol. This is especially true for discrete-event
systems, where different local components run in parallel. More-
over, examples of supervisory control of modular discrete-event
systems show that a coordinator is often necessary for achieving
the required properties because the purely decentralized control
architecture may fail in achieving these goals.

The notion of separability of a specification language has been
introduced in [2]; it says that a language K over an alphabetn

i=1 Ei, n ≥ 2, is separable if K = ∥
n
i=1 Pi(K), where, for all

i = 1, 2, . . . , n, Pi :
n

i=1 Ei
∗

→ E∗

i is a projection. A specifica-
tion for a global system is separable if it can be represented (is fully
determined) by local specifications for the component subsystems.
It is very closely related to the notion of decomposability intro-
duced in [3,4] for decentralized discrete-event systems, which is

∗ Corresponding author. Tel.: +420 222090784; fax: +420 541218657.
E-mail addresses: komenda@ipm.cz (J. Komenda), masopust@math.cas.cz

(T. Masopust), J.H.van.Schuppen@cwi.nl (J.H. van Schuppen).

also further studied in [5]. Decomposability is a slightly more gen-
eral condition because it involves not only the specification, but
also the plant language; that is, a language K ⊆ L over an alphabetn

i=1 Ei, n ≥ 2, is decomposable with respect to a plant language L
if K = ∥

n
i=1 Pi(K) ∥ L: separability is then decomposability where

L =
n

i=1 Ei
∗ is the set of all strings over the global alphabet. In

this paper, we slightly abuse the terminology and call a separable
language in the sense of [2] also decomposable. It has been shown
in [2] that decomposability is important because it is computa-
tionally cheaper to compute locally synthesized supervisors that
constitute a solution of the supervisory control problem for this
decomposable specification. Recently, the notion of decomposabil-
ity has also been extended to automata as an automaton decom-
posability in [6].

However, the assumption that a specification language is de-
composable is too restrictive. Therefore, several authors have tried
to find alternative techniques for general indecomposable speci-
fication languages; for instance, the approach of [7] is based on
partial controllability, which requires that all shared events are
controllable, or the shared events must have the same controlla-
bility status (but then an additional condition of so-called mutual
controllability [8] is needed).

In this paper, we study a weaker version of decomposability,
so-called conditional decomposability, which has recently been in-
troduced in [9] and studied in [10,11] in the context of coordina-
tion supervisory control of discrete-event systems. It is defined as
decomposability with respect to local alphabets augmented by the
coordinator alphabet. Theword conditionalmeans that, although a
language is not decomposable with respect to the original local al-
phabets, it becomes decomposable with respect to the augmented

0167-6911/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2012.07.013

http://dx.doi.org/10.1016/j.sysconle.2012.07.013
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:komenda@ipm.cz
mailto:masopust@math.cas.cz
mailto:J.H.van.Schuppen@cwi.nl
http://dx.doi.org/10.1016/j.sysconle.2012.07.013


J. Komenda et al. / Systems & Control Letters 61 (2012) 1260–1268 1261

ones, i.e., decomposability is only guaranteed (conditioned) by lo-
cal event set extensions by coordinator events.

In the coordination control approach of modular discrete-event
systems, the plant is formed as a parallel composition of two or
more subsystems, while the specification language is represented
over the global alphabet. Therefore, the property of conditional
decomposability is required in this approach to distribute parts
of the specification to the corresponding components to solve the
problem locally. More specifically, we need to ensure that there
exists a corresponding part of the specification for the coordinator
and for each subsystem composed with the coordinator. Thus,
if the specification is conditionally decomposable, we can take
this decomposition as the corresponding parts for the subsystems
composed with a coordinator and solve the problem locally.

Conditional decomposability depends on the alphabet of the co-
ordinator, which can always be extended so that the specification
is conditionally decomposable. In the worst (but unlikely) case, all
events must be put into the coordinator alphabet to make a lan-
guage conditionally decomposable. But in the case when the co-
ordinator alphabet would be too large, it is better to divide the
local subsystems into groups that are only loosely coupled, and in-
troduce several coordinators on smaller alphabets. In this paper,
a polynomial-time algorithm is provided for verification whether
a language is conditionally decomposable. We make an important
observation that the algorithm is linear in the number of local al-
phabets, while algorithms for checking similar properties (such
as decomposability and co-observability) suffer from exponential-
time complexity with respect to the number of local alphabets.
This algorithm is then modified so that it extends the coordina-
tor alphabet to make the specification language conditionally de-
composable. Furthermore, we discuss a relationship of conditional
decomposability to nonblockingness of a coordinated system,
where a coordinated system is understood as a modular system
composed of two or more subsystems and a coordinator.

Finally, since one of the central notions of this paper is the
notion of a (natural) projection, the reader is referred to [12] for
more information on the state complexity of projected regular
languages.

The rest of this paper is organized as follows. In Section 2, basic
definitions and concepts of automata theory and discrete-event
systems are recalled. In Section 3, a polynomial-time algorithm
for testing conditional decomposability for a general monolithic
system is presented. In Section 4, this algorithm is modified
to extend the coordinator alphabet so that the specification
becomes conditionally decomposable. In Section 5, the relation
of nonblockingness of a coordinated system with conditional
decomposability is discussed. The conclusion with hints for future
developments is presented in Section 6.

2. Preliminaries and definitions

In this paper, we assume that the reader is familiar with the
basic concepts of supervisory control theory [13] and automata
theory [14]. For an alphabet E, defined as a finite nonempty set,
E∗ denotes the free monoid generated by E, where the unit of E∗,
the empty string, is denoted by ε. A language over E is a subset of
E∗. A prefix closure L of a language L ⊆ E∗ is the set of all prefixes
of all words of L, i.e., it is defined as the set L = {w ∈ E∗

| ∃u ∈

E∗
: wu ∈ L}. A language L is said to be prefix closed if L = L.
In this paper, the notion of a generator is used to denote

an incomplete deterministic finite automaton. A generator is a
quintuple G = (Q , E, δ, q0, F), where Q is a finite set of states, E
is an input alphabet, δ : Q × E → Q is a partial transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final or marked
states. In the usual way, δ is inductively extended to a function
from Q × E∗ to Q . The language generated by G is defined as the

set L(G) = {w ∈ E∗
| δ(q0, w) ∈ Q }, and the language marked by

G is defined as the set Lm(G) = {w ∈ E∗
| δ(q0, w) ∈ F}. Moreover,

we use the predicate δ(q, a)! to denote that the transition δ(q, a) is
defined in state q ∈ Q for event a ∈ E.

For a generatorG, lettrim(G)denote the trim ofG, that is, a gen-
erator trim(G) such that Lm(trim(G)) = L(trim(G)) = Lm(G). In
otherwords, all reachable states ofG fromwhich nomarked state is
reachable are removed (including the corresponding transitions),
and only reachable states are considered in trim(G); see [13,15].
A generator G is said to be nonblocking if Lm(G) = L(G). Thus,
trim(G) is always nonblocking.

A (natural) projection P : E∗
→ E∗

0 , where E0 ⊆ E are alphabets,
is a homomorphism defined so that P(a) = ε, for a ∈ E \ E0, and
P(a) = a, for a ∈ E0. The inverse image of the projection P , denoted
by P−1

: E∗

0 → 2E∗

, is defined so that, for a language L over the
alphabet E0, the set P−1(L) = {s ∈ E∗

| P(s) ∈ L}. In what follows,
we use the notation P i

j to denote the projection from Ei to Ej; that
is, P i

j : E∗

i → E∗

j . In addition, we use the notation Ei+j = Ei∪Ej, and,
thus, P i+j

k denotes the projection from Ei+j to Ek. If the projection is
from theunion of all the alphabets, thenwe simply use the notation
Pi :


j Ej

∗
→ E∗

i .
Let L1 ⊆ E∗

1 and L2 ⊆ E∗

2 be two languages. The parallel compo-
sition of L1 and L2 is defined as the language

L1 ∥ L2 = P−1
1 (L1) ∩ P−1

2 (L2),

where P1 : (E1∪E2)∗ → E∗

1 and P2 : (E1∪E2)∗ → E∗

2 . A similar def-
inition in terms of generators follows. Let G1 = (X1, E1, δ1, x01, F1)
and G2 = (X2, E2, δ2, x02, F2) be two generators. The parallel com-
position of G1 and G2 is the generator G1 ∥ G2 defined as the acces-
sible part of the generator (X1 × X2, E1 ∪ E2, δ, (x01, x02), F1 × F2),
where

δ((x, y), e) =


(δ1(x, e), δ2(y, e)), if δ1(x, e)! and δ2(y, e)!;
(δ1(x, e), y), if δ1(x, e)! and e ∉ E2;
(x, δ2(y, e)), if e ∉ E1 and δ2(y, e)!;
undefined, otherwise.

The automata definition is related to the language definition by the
following properties: L(G1 ∥ G2) = L(G1) ∥ L(G2) and Lm(G1 ∥

G2) = Lm(G1) ∥ Lm(G2); see [13].
The automata-theoretic concept of nonblockingness of a com-

position of two generators G1 and G2 is equivalent to the language-
theoretic concept of nonconflictness of two languages Lm(G1) and
Lm(G2) if the generators G1 and G2 are nonblocking. Recall that
two languages L1 and L2 are nonconflicting if L1 ∥ L2 = L1 ∥ L2;
cf. [15–17].

LetG be a generator and P be a projection, then P(G) denotes the
minimal generator such that Lm(P(G)) = P(Lm(G)) and L(P(G)) =

P(L(G)). For a construction of P(G), the reader is referred to [13,15].
Now, the main concept of interest of this paper, the concept

of conditional decomposability, is defined. See also [9–11,18] for
applications and further discussion concerning this concept.

Definition 1 (Conditional Decomposability). A language K over an
alphabet E1 ∪ E2 ∪ · · · ∪ En, where n ≥ 2, is said to be condi-
tionally decomposable with respect to E1, E2, . . . , En, and Ek, wherei≠j

i,j∈{1,2,...,n}(Ei ∩ Ej) ⊆ Ek ⊆
n

j=1 Ej, if

K = P1+k(K) ∥ P2+k(K) ∥ · · · ∥ Pn+k(K).

Recall that Pi+k denotes the projection from
n

j=1 Ej to Ei+k.

Note that ∥
n
i=1 Pi+k(K) = (∥n

i=1 Pi+k(K)) ∥ Pk(K) because
Pi+k(K) ⊆ (P i+k

k )−1Pk(K), which follows from the fact that
P i+k
k Pi+k(K) = Pk(K). Hence, ∥n

i=1 Pi+k(K) ⊆ P−1
k Pk(K). Moreover,

if the language K is given as a parallel composition of n languages
(over the required alphabets), then it is conditionally decompos-
able.



Download English Version:

https://daneshyari.com/en/article/756372

Download Persian Version:

https://daneshyari.com/article/756372

Daneshyari.com

https://daneshyari.com/en/article/756372
https://daneshyari.com/article/756372
https://daneshyari.com

