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a b s t r a c t

Recursive stochastic algorithms have various applications. In the literature, it is assumed that the true
value lies in a connected domain. But, in many cases, it is known that the true value is contained
in the union of a finite number of pairwise disjoint sets instead of a connected domain. In these
situations, the existing algorithms may be not applicable. To cope with this problem, this paper
proposes recursive stochastic algorithmswith (event-triggered)Markovian jumps and presents sufficient
conditions for almost sure convergence of the proposed algorithms. As an example of applications, this
paper significantly improves an existing adaptive algorithm with the proposed method for consistent
estimation of non-minimum phase zeros.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The study of recursive stochastic algorithms, also known
as stochastic approximations, was initiated by Robbins and
Monro [1], who developed and analyzed a recursive procedure for
finding the root of a real-valued function of a real variable. The use
of recursive stochastic algorithms is now very widespread across
varied applications such as system identification, adaptive control,
transmission systems, machine learning, adaptive filtering for
signal processing, and several aspects of pattern recognition (see
[2–7] and the references therein). In the literature ([2,3,8–12,4,5,
13–16,6] and the references therein), it is usually assumed that the
true value lies in a connected compact domain, and the recursive
scheme starts with a chosen interior point of this domain. To keep
the estimator in the domain, a projection or a resettingmechanism
is employed in the recursive algorithm itself (see, e.g., [17,11,12,4,
13,14,6]). However, in many practical cases, it is known that the
true value is contained in the union of a finite number of pairwise
disjoint compact subsets instead of a connected compact domain.
It could be possible to find a larger connected compact domain that
includes the union of the subsets and then implement the recursive
algorithm over the larger connected domain. But sometimes this
is unfeasible, since, for example, there are some singular points,
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and hence the algorithm is not well defined on such a larger
domain (see Section 4). To deal with this problem, we introduce
(event-triggered) Markovian jumps into the recursive stochastic
algorithms (as a resetting mechanism) and present the sufficient
conditions for convergence with probability one of our proposed
algorithms.

Our proposed method may have many promising applications
(see, e.g., [18–20] and the references therein). One of these is
the consistent estimation of NMP (non-minimum phase) zeros.
NMP zeros play important roles in many control applications since
they limit closed loop performance. Recently, identification of
real-valued NMP zeros of discrete-time LTI (linear time-invariant)
systems has been studied in a fewworks (see, e.g., [21–23]). Among
the key results, [23] proposes an adaptive algorithm for consistent
estimation of real-valued NMP zeros in stable LTI systems by
applying a result in [11] (see Theorem 4.1 in [11] and also
Appendix A in [23]), which shows that it is possible to estimate a
real-valued NMP zero with multiplicity one outside the unit circle
consistently using a simple two-parameter FIR (finite impulse
response) model if the input can be manipulated and some prior
information is available. In [23], it is assumed that not only is some
prior knowledge about the location of the NMP zero of interest
known, but also the sign of the first impulse response coefficient
is known. Recently, [24] modified this adaptive algorithm by
introducing a numerical transform and removing one important
condition on the prior knowledge, namely, that of the sign of the
first impulse response coefficient. However, prior information on
the sign of the zero of interest is still required and, moreover, the
modifiedmethod is only applicable to the estimation of the farthest
ones. Without such prior system knowledge, these results are not
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applicable (see [24]). But, in many practical cases, the sign of the
NMP zero or that of the first impulse response coefficient cannot be
known in advance. As an example of applications, we improve the
recursive algorithm presented in [23] with our proposed method
so that it works for consistent estimation of zeros in stable LTI
systems when prior knowledge on either the sign of the zero of
interest or that of the high frequency gain is unavailable.

2. Recursive algorithms with Markovian jumps

Our problem will be embedded in an underlying probability
space (Ω, F , P). Let E[·] be the expectation operator with respect
to the probability measure.

A general form of the Robbins–Monro algorithms is given by
(see [2,3,5])

xn+1 = xn + γn+1H(xn, Φn+1), (1)

where {xn}n≥0 is the sequence of vectors to be recursively updated;
{Φn}n≥1 is a sequence of random vectors representing the on-line
observations of the system in the form of a state vector (see (4)
below); {γn}n≥1 is a sequence of scalar gains satisfying

γn ≥ 0, ∀ n ≥ 1
∞
n=1

γn = ∞,

∞
n=1

nγ α
n < ∞ for some α > 1.

(2)

H(x, Φ) is the function that essentially defines how the parameter
x is updated as a function of new observations and may admit
discontinuities, while

h(x) , lim
n→∞

Ex[H(x, Φn)] (3)

is well defined on a finite number of compact sets D1,D2, . . . ,DM ,
where Dm,m ∈ SM = {1, 2, . . . ,M}, is connected and Dj ∩Dm = ∅

if j ≠ m. The initial estimate ξm ∈ intDm can be chosen with extra
prior knowledge or, otherwise, as any interior point ofDm,m ∈ SM .

Assume that {Φn} is conditionally linear (see [13,14]); that is,

Φn+1 = A(xn)Φn + B(xn)ηn, (4)

where A(x) and B(x) are matrices with bounded entries for all
x ∈ Dm,m ∈ SM ; noise {ηn} is a sequence of independent random
variables such that

sup
n

E

eε̄|ηn|

2


< ∞ (5)

holds for some ε̄ > 0, which is certainly satisfied for wide-sense
stationary Gaussian sequences (see [8,11,12]).

Moreover, assume that the time-varying system (4) is BIBO
(bounded input–boundedoutput) stable. According to Theorem2.1
in [25], the switching system (4) is BIBO stable if and only if
it is uniformly exponentially stable, or, equivalently, uniformly
asymptotically stable (see, e.g., [26]). Clearly, the BIBO stability
of (4) is guaranteed by the joint stability of A(x) for all x ∈ Dm,m ∈

SM ; that is (see, e.g., Condition 4.1 in [11] and Condition 3.7 in [12]),
there exist a symmetric positive definite matrix V and a constant
λ ∈ (0, 1) such that

AT (x)VA(x) ≤ λV (6)

for all x ∈ Dm,m ∈ SM . But the BIBO stability of system (4) is
also ensured when the bounded set of matrices ΣA = {A(x) : x ∈

Dm, m ∈ SM} is LCP (left convergent products), i.e., every left-
infinite product limn→∞ An · · · A2A1 converges, where Ak ∈ ΣA for
all k = 1, 2, . . . , n (see [27,28]). In the example for applications
of our proposed method, we will show the BIBO stability of

system (4) by applying an important result of the joint spectral
radius (see [29,27,28] and the references therein) in Section 4.

Let us present the following recursive stochastic algorithmwith
event-triggered Markovian jumps:

xn+1− = xn + γn+1H(xn, Φn+1),

x0 = ξj0 ∈ intDj0 , j0 ∈ SM
(7)

xn+1 =


xn+1−, xn ∈ Dj, xn+1− ∈ Dj, j ∈ SM

ξ̃ , otherwise, (8)

where xn+1 = ξ̃ will be randomly reset to ξm ∈ intDm,m ∈ SM ,
according to the Markov transition matrix

PM =


p11 p12 · · · p1M
p21 p22 · · · p2M
...

...
. . .

...
pM1 pM2 · · · pMM

 (9)

with pjm > 0 and
M

m=1 pjm = 1 for all 1 ≤ j,m ≤ M; that
is, P{xn+1 = ξm} = pjm if xn ∈ Dj and xn+1− ∉ Dj. The entries
of the Markov transition matrix (9) can be assigned values with
prior knowledge. In the absence of other information, a reasonable
choice is to take pjm = 1/M for all 1 ≤ j,m ≤ M , which
is employed in the application example of our proposed method
(see Section 4).

3. Convergence analysis: the ODE (ordinary differential equa-
tion) method

The ODE associated with the algorithm is now introduced as
follows:

dy(v)

dv
= h(y(v)) (10)

for v ≥ 0 with initial value y(0) = y0 = x1, where function h(·) is
given by (3). The solution of ODE (10) is denoted by y(v) = y(v; y0)
for v ≥ 0. Assume that there is an attractor x∗

m of ODE (10) such that
the distance between x∗

m and Dm is bigger than 0 (i.e., d(x∗
m,Dm) >

0) and Dm ⊂ D∗
m for m = 1, 2, . . . ,M − 1, while ODE (10)

has an asymptotically stable equilibrium point x∗ ∈ intDM with
DM ⊂ D∗, where D∗

m and D∗ are the domains of attraction of x∗
m and

x∗, respectively. Moreover, YM ⊂ intDM , where

YM = {y(v) : v ≥ v0, y(v0) = ξM}. (11)

Let us present the following convergence result.

Theorem 3.1. The discrete-time process {xn} computed by the recur-
sive stochastic algorithm with Markovian jumps (7)–(9) converges to
x∗ a.s. (almost surely) as n → ∞.

Proof. Without loss of generality, assume that x0 = ξj0 ∈ intDj0
and y0 = x1 ∈ Dm with 1 ≤ j0,m ≤ M − 1. The proof is
rather technical, so it is divided into five steps, which will show
the following: the state vector {Φn}0≤n≤N̄ is bounded a.s. for any
N̄ ≥ 1 in step 1; the estimator {xn} hits the boundary of Dm,m =

1, 2, . . . ,M − 1, and then enters DM in finite time a.s. in step
2 and step 3, respectively; there exists a finite random variable
ρk < ∞ such that the estimator {xn} stays in DM for all n ≥ ρk
with probability one in step 4; and, in step 5, the estimator {xn}
converges to x∗ a.s. as n → ∞. For n > 1, we say that xn hits the
boundary of Dm, denoted by ∂Dm, if xn−1 ∈ Dm and xn− ∉ Dm.
Step 1: For system (4), we have

P


sup

0≤n≤N̄
|Φn| < ∞


= 1 (12)
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