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a b s t r a c t

A novel diagnostic framework is discussed for fault detection of nonlinear systems whose structure is
described by multivariate polynomials. The trade-off between disturbance rejection and fault sensitivity
prescriptions is characterized via algebraic geometry conditions and the unknown input observer
design problem is formulated via sum-of-squares (SOS) technicalities by exploiting the results of the
Positivstellensatz Theorem. An adaptive threshold logic is proposed to reduce the generation of false
alarms, and the diagnostic filter capabilities are illustrated via a numerical example taken from the
literature.
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1. Introduction

Fault diagnosis covers an important class of methodologies and
instruments in systems engineering to improve plant reliability
and tolerance to anomalous and faulty events. Strictly speaking, a
fault can be considered as an undesired and unexpected event in
the process mainframe which tends to degrade the overall plant
performance. Some faults, if not promptly and properly detected,
could turn into unrecoverable failures, causing serious damage.
By considering that the actual demand for enhanced productivity
leads to challenging plant operations, advanced supervision and
fault detection (FD) schemes can help to improve the overall plant
efficiency and the reconfiguration capabilities of the control laws
as well by the early detection and accommodation of system
anomalies. From the previous discussion it is clear that the FD issue
involves decisions, based on the monitored data, on whether there
is a fault or the system is running normally. Many authors have
addressed such a crucial point in several books and survey articles
by using different approaches (model-based design, parameter
estimation, generalized likelihood ratio, etc.). See [1,2] and the
references therein for comprehensive and up-to-date tutorials.

Amongst all the existingmethodologies, the design and analysis
of model-based FD paradigms via the analytical redundancy
approach has received significant attention in the last two
decades. This approach hinges upon two components, an unknown
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input observer (UIO) and a decision logic. The UIO role is
to simultaneously decouple the residuals from the exogenous
disturbances and increase the sensitivity of the residuals with
respect to (w.r.t.) faults. The decision logic is in charge instead to
possibly discriminate between real and false alarms [3,2].

Robustmodel-based FD problems have been studied mainly for
linear system frameworks, and many effective methods have been
developed. For amore thorough review, the reader is referred to [3]
and the references therein. However, it must be emphasized that
using a linear approach gives rise to an unavoidable level of conser-
vativeness if the system to be monitored is strongly nonlinear and
a significant number of working points need to be covered during
operations. Then, the development of direct nonlinear FDmethods
may be of interest andmay play a key role in some specific applica-
tions: observer-based [4,5] and adaptive threshold approaches [1]
have been proposed for a class of Lipschitz nonlinear systems with
unstructured modeling uncertainty [6].

Recent advancements in sum-of-squares (SOS) programming
techniques and the results of the Positivstellensatz Theorem
from real algebraic geometry make it possible to state analysis
and feedback design problems for polynomial nonlinear systems
as SOS programs which are computationally tractable; see,
e.g., [7]. In particular, SOS decomposition problems have been
found to be solvable by means of semi-definite programming
techniques, whose computational complexity has been shown to
be polynomial in the problem size [8]. Applications of polynomial
methodologies for FD problems are few in the literature; see,
e.g., [9]. In this contribution, an FD observer design method is
described by means of homogeneous and generalized Krasovskii-
type Lyapunov functionals which are non-quadratic with respect
to the control system output.
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Moving from these considerations, here we propose a novel
FD design procedure for nonlinear systems whose vector field
is a multivariate polynomial in the state plant components. The
proposed filter is designed to jointly decouple the residuals from
the disturbances and conversely to enhance the residual sensi-
tivity to faults. The residual generator consists of a ‘‘Luenberger-
like’’ unknown nonlinear input observer (UNIO) [4], whose gain
is also a multivariate polynomial in the state estimate variables.
Rigorous frequency conditions ensuring solvability of the pro-
posed nonlinear FD design problem are derived by resorting to
Volterra series expansions of the residual output. The residual’s
Volterra expansion is instrumental for FD solvability reasons to
characterize the frequency separation conditions between the
disturbance/reference-input rejection requirements and the fault
sensitivity prescriptions [10–12]. It should be noted that, to our
best knowledge, the joint use of the frequency decoupling condi-
tions in a nonlinear framework and the proposed SOS-based design
are a significant first attempt in literature to characterize the FD
UNIO design. Even if the solution gives rise to Bilinear Matrix In-
equalities (BMIs), the key aspect consists in an inherent FD frame-
work easiness because the proposed scheme traces out a linear
robust frequency-based FD procedure (see [13,2] and references
therein for details).

The FD outputs are then evaluated by means of an ‘‘rms-
norm’’ time-based function and comparedwith a non-conservative
threshold. The logic is equipped with an adaptive mechanism,
whose parameters are computed from the outset in the worst-
case scenario. This ensures that, for any nuisance occurrence, the
residual error remains below its threshold, avoiding the generation
of false alarms. From a computational point of view, such a
functional is obtained by jointly bounding the estimation error
and solving suitable SOS programming problems to compute the
related coefficients.

A simulation example taken from the literature is finally
considered in order to illustrate the benefits and the effectiveness
of the proposed SOS-based FD scheme.

Notation

• WithR[x]wedenote the ring ofmultivariate scalar polynomials
p ∈ R[x] in the unknown x ∈ Rn.

• With Σ[x] ⊂ R[x] we denote the proper and closed subset

Σ[x] :=


s ∈ R[x]|∃q < ∞, ∃{pi}

q
i=1, pi ∈ R[x],

s.t. s =

q
i=1

p2i


of multivariate SOS polynomials s ∈ Σ[x] in the unknown
x ∈ Rn.

• The polynomial p(x), having degree 2d, belongs toΣ[x] iff there
exists a symmetric matrix Q = Q T

≥ 0 such that p(x) =

zT (x)Qz(x), z(x) = [1, x1, x2, . . . , xn, x1x2, . . . , xdn]
T , with z(x)

containing all monomials in the variables x1, . . . , xn of degree
lower than or equal to d. The matrix Q is known as the Gram
matrix or the square matricial representation (SMR) of p(x)
[14,15].

• Given a finite-energy signal w(·), we denote with

Ωw ,


w(·)

∃εw > 0 s.t.


∞

0
∥w(t)∥2

2dt ≤ εw


the L2 ball of radius ϵw .

• Given a set S ⊆ X × Y ⊆ Rn
× Rm, the projection of the set S

onto X is defined as ProjX (S) := {x ∈ X | ∃y ∈ Y s.t. (x, y) ∈ S}.

2. Problem statement

Let us consider a plant described by the following nonlinear
model:
ẋ(t) = a(x(t)) + b(x(t))u(t) + e(x(t))f (t) + g(x(t))d(t)
y(t) = h(x(t)), (1)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm the reference input,
and y(t) ∈ Rp the measured output; f (t) ∈ Rmf denotes the
fault signal, d(t) ∈ Rmd the exogenous disturbance; a(x) ∈ Rn

[x],
b(x) ∈ Rn×m

[x], e(x) ∈ Rn×mf [x], g(x) ∈ Rn×md [x] and h(x) ∈ Rp
[x]

are arrays and matrices of multivariate polynomials, respectively.
The reference, disturbance, and fault inputs are supposed to belong
respectively to the sets Ωf , Ωd, and Ωu.

In what follows, we will assume that 0x is a zero-input
equilibrium and, for conciseness, we will limit our attention to
process disturbances and actuator faults. This is not a serious
limitation, because the presence of sensor faults and noises can be
easily addressed by recasting them as actuator faults and process
disturbances; see [3]. Moreover, the polynomial system (1) is
assumed to be observable, see [16], and this structural condition
can be tested via simple SOS procedures based on Gramians
arguments as outlined in [17].
Based on the system representation (1), the objective is to design
a diagnostic device capable to efficiently detect deviations from
the normal operating conditions due to fault occurrences. To this
purpose we will resort to a class of ‘‘Luenberger-like’’ residual
generators having the following expression:

ˆ̇x(t) = a(x̂(t)) + b(x̂(t))u(t) + L(x̂) (y(t) − h(x̂(t)))
r(t) = h(x(t)) − h(x̂(t)),

(2)

where L(x̂) ∈ Rn×p
[x̂]denotes the observer gain,which is supposed

to be a matrix of multivariate polynomials in the state estimate
x̂. As standard in robust FD problems, the designed residual
generator needs to meet suitable fault sensitivity requirements.
This means that the filter must be capable of discriminating
internal anomalous dynamic behavior due to faults from those
pertaining to all other nuisances (disturbances and reference
inputs).

Note that the objectives of robust residual generation are par-
tially conflicting with each other, and there exists an unavoid-
able trade-off between theminimization of the disturbance effects
and reference input on the residual and the maximization of the
residual sensitivity to faults. Observe also that, for solvability rea-
sons, the above sensitivitymaximizationmakes it sense over a pre-
scribed frequency range.
As will be clear in what follows, it is supposed that the
exogenous/reference inputs and fault signals will not ‘‘overlap’’
in terms of frequency spectra. This means that, if the fault signal
exhibits a relevant harmonic component at a given frequency, say
ω̄, the disturbance spectrum, evaluated at the same frequency,
will present instead a numerically negligible harmonic component.
The converse (relevant harmonic components for the disturbance
and negligible corresponding fault spectrum value at a given
frequency) is also true. This requirement can then be carried out
by shaping arbitrary exogenous/reference inputs and fault signals
belonging to Ωd, Ωu, and Ωf with a priori chosen linear filters
whose finite-dimension realizations are characterized as follows;
ẋd(t) = Adxd(t) + Bdd(t)
d̂(t) = Cdxd(t) + Ddd(t)

(3)
ẋf (t) = Af xf (t) + Bf f (t)
f̂ (t) = Cf xf (t) + Df f (t).

(4)

Notice that the filter (3) will be also used to shape the reference
input under the hypothesis that (see [13] for a detailed discussion
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