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a b s t r a c t

We extend the technique for compensating state-dependent delays from systems with delayed inputs to
systems with delayed states. We focus on predictor-feedback design for nonlinear systems in the strict-
feedback form, having a state-dependent state delay on the virtual input. The two key challenges are the
definition of the predictor state and the fact that the predictor design does not follow immediately from
the delay-free design. We resolve these challenges and we establish asymptotic stability of the resulting
infinite-dimensional nonlinear system for general nonnegative-valued delay functions of the state. Due
to an inherent limitation on the delay rate, and since the delay rate depends on the state, we obtain only
regional stability results. However, for forward-complete systems, we provide an estimate of the region
of attraction in the state space of the infinite-dimensional system. We finally provide two examples,
including an example of stabilization of a cooling system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

State-dependent state delays appear in many engineering
applications. Examples include milling processes [1], engine
cooling systems [2], irrigation channels [3], network congestion
control [4], population dynamics [5], supply networks [6,7] and
automatic landing systems [8].

Predictor-based techniques are an indispensable part of the
control design toolbox [9], for unstable linear plants with constant
delays affecting the input [10–13] or simultaneously affecting
inputs and states [14–17]. Various control schemes also exist
for nonlinear systems with constant delays affecting the input
[18–20] or state [21–23]. Yet, extensions of the predictor-feedback
design to nonlinear systems with constant input delay had not
been developed until recently [24,25]. Although in [26] (see
also [27]), a predictor-based controller for unstable linear plants
with time-varying input delay is developed, only recently a
Lyapunov function was provided [28]. Finally, although nonlinear
systems with simultaneous time-varying input and state delays
are considered in [29], predictor-like designs for nonlinear systems
with time-varying input delays [30] or simultaneous input and
state delays [31] were developed recently. In [32], we introduced
a technique for compensating state-dependent delays on the input
of a nonlinear system. In this paper, we generalize this technique
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to systems that include state-dependent delays on the states of the
system.

We consider forward-complete systems that are globally
stabilizable in the absence of the delay. We then ‘‘backstep’’
one state-dependent integrator and design a predictor-based
control law for the overall system, using prediction intervals that
depend on the current value of the state (Section 2). Using an
invertible infinite-dimensional backstepping transformation we
derive explicit bounds for the norm of the closed-loop system.
Due to the fundamental limitation of the allowable magnitude of
the delay function’s gradient (the control signal never reaches the
plant if the delay rate is larger than one) we use these bounds
to estimate the region of attraction of the proposed controller
(Section 3). Two simulation examples illustrate the application of
the control design (Sections 4 and 5).

Notation: we use the common definition of class K , K∞ and
K L functions from [33]. For an n-vector, the norm | · | denotes the
usual Euclideannorm.We say that a function ξ : R+×(0, 1) → R+

belongs to class K C if it is of class K with respect to its first
argument for each value of its second argument and continuous
with respect to its second argument. It belongs to class K C ∞ if it
is in K C and also in K∞ with respect to its first argument.

2. Problem formulation and controller design

We consider the following system

Ẋ1(t) = f1 (t, X1(t), X2 (t − D (X1(t)))) (1)

Ẋ2(t) = f2 (t, X1(t), X2(t)) + U(t), (2)
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where X1 ∈ Rn, X2, U ∈ R and t ≥ t0 ≥ 0. We assume that
f1 : [t0, ∞) × Rn+1

→ Rn is locally Lipschitz with f1(t, 0, 0) = 0
for all t ≥ t0 and that there exists a class K∞ function α̂ such that

|f1 (t, X1, X2) | ≤ α̂ (|X1| + |X2|) , for all t ≥ t0. (3)

We further assume that f2 : [t0, ∞)×Rn+1
→ R is locally Lipschitz

with respect to (X1, X2) ∈ Rn+1 with f2(t, 0, 0) = 0 for all t ≥ t0.
The goal of the paper is to show that for (1), (2) there exist functions
P(θ) and σ(θ), where t − D (X1(t)) ≤ θ ≤ t , such that the
controller

U(t) = −f2 (t, X1(t), X2(t)) − c2 (X2(t) − κ (σ (t), P1(t)))

+

∂κ(σ ,P1)
∂σ

+
∂κ(σ ,P1)

∂P1
f1 (σ (t), P1(t), X2(t))

1 − ∇D (P1(t)) f1 (σ (t), P1(t), X2(t))
, (4)

where c2 is an arbitrary positive constant and

P1(θ) = X1(t)

+

 θ

t−D(X1(t))

f1 (σ (s), P1(s), X2(s)) ds
1 − ∇D (P1(s)) f1 (σ (s), P1(s), X2(s))

,

t − D (X1(t)) ≤ θ ≤ t (5)

σ(θ) = θ + D (P1(θ)) , t − D (X1(t)) ≤ θ ≤ t, (6)

for t ≥ t0, compensates the state-dependent state delay and
achieves asymptotic stability of the resulting closed-loop system.
We refer to the quantity P1(θ) given in (5) as ‘‘predictor’’ since P1(t)
is the D (P1(t)) time units ahead predictor of X1(t), i.e., P1(t) =

X1 (t + D (P1(t))). This fact can be seen as follows. Differentiating
relation (5) with respect to θ and setting θ = t we get

dP1(t)
dt

=
f1 (σ (t), P1(t), X2(t))

1 − ∇D (P1(t)) f1 (σ (t), P1(t), X2(t))
. (7)

Performing a change of variables τ = σ(t) in the ODE for X1(τ )

given by dX1(τ )

dτ = f1 (τ , X1(τ ), X2 (τ − D (X1(τ )))), we have that

dX1(σ (t))
dt

=
dσ(t)
dt

f1 (σ (t), X1(σ (t)), X2 (t)) . (8)

From (8) one observes that P1(t) satisfies the same ODE in t as
X1(σ (t)) because from (6) to (8) it follows that

dσ(θ)

dθ
=

1
1 − ∇D (X1(σ (θ))) f1 (σ (θ), X1(σ (θ)), X2(θ))

,

t − D (X1(t)) ≤ θ ≤ t, (9)

provided that P1(t) = X1(σ (t)). Since from (5) for t = t0 and
θ = t0 − D (X1(t0)) it follows that P1 (t0 − D (X1(t0))) = X1(t0),
by defining

φ(t) = t − D (X1(t)) , t ≥ t0, (10)

σ(θ) = φ−1(θ), t − D (X1(t)) ≤ θ ≤ t, (11)

we have that P1(t0) = X1 (σ (t0)). Noting from (10) and (11) that
D (X1(σ (t))) = σ(t) − t , differentiating this relation, we get
(9). Comparing (7) with (8) we conclude with the help of (9) that
indeed P1(t) = X1 (σ (t)) for all t ≥ t0.

Motivated by the need to keep the denominator in (5) and (9)
positive, throughout the paper we consider the condition on the
solutions which is given by

Gc : ∇D (P1(θ)) f1 (σ (θ), P1(θ), X2(θ)) < c,
for all θ ≥ t0 − D (X1(t0)) , (12)

for c ∈ (0, 1]. We refer to G1 as the feasibility condition of the
controller (4)–(5).

3. Stability analysis for forward-complete systems

Throughout the section, we make the following assumptions
concerning the plant (1)–(2):

Assumption 1. D ∈ C1 (Rn
; R+) and ∇D is locally Lipschitz.1

Assumption 2. There exist a smooth positive definite function R
and class K∞ functions α1, α2 and α3 such that for the plant Ẋ =

f1(t, X, ω), the following hold

α1 (|X |) ≤ R (t, X) ≤ α2 (|X |) (13)
∂R (t, X)

∂t
+

∂R (t, X)

∂X
f1 (t, X, ω) ≤ R (t, X) + α3 (|ω|) , (14)

for all X, ω ∈ Rn+1 and t ≥ t0.

Assumption 2 guarantees that the plant Ẋ = f1(t, X, ω) with ω
as input is forward-complete.

Assumption 3. There exist functions κ ∈ C1 ([t0, ∞) × Rn
; R)

and ρ̂ ∈ K∞, such that the plant Ẋ(t) = f1

t, X(t), κ


t, X(t)


+ω(t)


is input-to-state stablewith respect toω and κ is uniformly

bounded with respect to its first argument, that is,

|κ(t, X)| ≤ ρ̂(|X |), for all t ≥ t0. (15)

Theorem 1. Consider the plant (1)–(2) together with the control
law (4)–(6). Under Assumptions 1–3, there exist a class K function
ξRoA, a class K L function β and a class K C ∞ function ξ1 such that
for all initial conditions for which X2 is locally Lipschitz on the interval
[t0 − D(X1(t0)), t0] and which satisfy

|X1(t0)| + sup
t0−D(X1(t0))≤θ≤t0

|X2(θ)| < ξRoA (c) , (16)

for some 0 < c < 1, there exists a unique solution to the closed-loop
system with X1 ∈ C1

[t0, ∞), X2 ∈ C1(t0, ∞), and

|X1(t)| + sup
t−D(X1(t))≤θ≤t

|X2(θ)|

≤ β


ξ1


|X1(t0)| + sup

t0−D(X1(t0))≤θ≤t0
|X2(θ)| , c


, t − t0


, (17)

for all t ≥ t0. Furthermore, there exists a class K function δ∗, such
that for all t ≥ t0 the following holds

D (X1(t)) ≤ D(0) + δ∗ (c) (18)Ḋ (X1(t))
 ≤ c. (19)

The proof of Theorem 1 is based on Lemmas 1–8 which are
presented next.

Lemma 1 (Backstepping Transform of the Delayed State). The
infinite-dimensional backstepping transformation of the state X2
defined by

Z2(θ) = X2(θ) − κ (σ (θ), P1(θ)) ,

t − D (X1(t)) ≤ θ ≤ t, (20)

together with the predictor-based control law given in relations
(4)–(5) transform system (1)–(2) to the ‘‘target system’’ given by

Ẋ1(t) = f1 (t, X1(t), κ (t, X1(t)) + Z2 (t − D (X1(t)))) (21)

Ż2(t) = −c2Z2(t). (22)

1 To ensure uniqueness of solutions.
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