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a b s t r a c t

This paper develops sufficient conditions for the existence of global exponential observers for two classes
of nonlinear systems: (i) the class of systems with a globally asymptotically stable compact set, and
(ii) the class of systems that evolve on an open set. In the first class, the derived continuous-time observer
also leads to the construction of a robust global sampled-data exponential observer, under additional
conditions. Two illustrative examples of applications of the general results are presented: one is a system
with monotone nonlinearities and the other is a chemostat system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

One of the biggest challenges of mathematical control theory
has been the problem of constructing state observers for nonlinear
systems. This problem has attracted a lot of attention in the
literature in the past decades; it has been approached with a
variety of methods and from a variety of points of view (see for
instance [1–12] and references therein). In this work, we focus on
nonlinear forward complete systems of the form

ẋ = f (x, u), x ∈ ℜ
n, u ∈ U, (1.1)

where U ⊆ ℜ
m is a non-empty set, f :ℜn

→ ℜ
n is a smooth vector

field, and the output is given by

y = h(x), (1.2)

where h:ℜn
→ ℜ

k is a smooth mapping. The aim is to construct
global exponential observers, i.e., observers with guaranteed
exponential rate of convergence of the estimation error.

Available methods for global exponential observers include
high-gain observers for globally Lipschitz systems [6] as well as
circle-criterion observers, primarily for nonlinear systems with
monotone nonlinearities [1,5]. In transformation-based observers,
originally developed in local form in [8] and subsequently in
[9,10], and in global form in [2], the system is mapped to a linear
system, and the design of the observer is performed in transformed
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coordinates, where exponential convergence is imposed. Finally,
global dead-beat observers are designed in [7] for a class of systems
linear in the unmeasured state components (global dead-beat
observers are by definition global exponential observers).

In this work, we present sufficient conditions for the existence
of exponential observers for two important classes of nonlinear
systems, which are not covered by the above methods.

(1) Nonlinear systems with an asymptotically stable compact set.
(2) Nonlinear systems evolving on open sets.

For both classes of systems, the proposed construction of the global
exponential observer starts with a ‘‘candidate observer’’, which is
subsequently modified by adding a correction term, in order to
satisfy appropriate Lyapunov inequalities. It should be emphasized
that explicit formulae for the observers are provided in each case,
and therefore the control practitioner can directly apply the results
of the paper.

In Section 2, where we study the first class of systems, the
‘‘candidate observer’’ is a local observer over a certain compact
set, whereas the correction term forces the trajectory to enter the
compact set in finite time. The derived continuous-time observer
can also lead to the construction of a robust global sampled-data
exponential observer, under additional conditions. The sampled-
data exponential observer is robust with respect to perturbations
of the sampling schedule and with respect to measurement errors
(see also [13–15] for sampled-data observers).

Section 3 studies the second class of systems, with the property
of evolving on an open proper subset of ℜ

n. Here, the ‘‘candidate
observer’’ does not guarantee that the observer trajectories lie
within the open set, and this is accomplished by adding an
appropriate correction term. The design of the correction term is

0167-6911/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2012.04.002

http://dx.doi.org/10.1016/j.sysconle.2012.04.002
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:ikarafyl@enveng.tuc.gr
mailto:kravaris@chemeng.upatras.gr
http://dx.doi.org/10.1016/j.sysconle.2012.04.002


798 I. Karafyllis, C. Kravaris / Systems & Control Letters 61 (2012) 797–806

performed after transforming the system through an appropriate
smooth injectivemap thatmaps the open set ontoℜ

n, even though
exponential convergence is enforced in the original coordinates.
The results of Section 3 are important because for many classes of
systems the state evolves in an open set (for example, biological
systems usually evolve in the open first quadrant). However, there
is another reason thatmotivates the results of Section 3. If a change
of coordinates X = Φ(x) can be found, where Φ:ℜn

→ ℜ
n is

a smooth injective mapping satisfying DΦ(x)f (x, u) = AΦ(x) +

b(h(x), u) for all x ∈ ℜ
n for certain Hurwitz matrix A ∈ ℜ

n×n

and certain mapping b: h(ℜn) × U → ℜ
n, then the mapping

Φ:ℜn
→ ℜ

n can be used for the design of an observer for (1.1)
and (1.2) under additional hypotheses (see [2,8]). The results of
Section 3 show that we do not have to assume that Φ(ℜn) = ℜ

n

(i.e.,Φ:ℜn
→ ℜ

n is onto); instead, we can require that A = Φ(ℜn)
is an open set and apply Theorem 3.1.

Finally, in Section 4, we present two illustrative examples
of application of the general results. The first example is a
system with monotone nonlinearities, and we apply the results
of Section 2 to derive a global exponential observer, first under
continuous-time measurements and subsequently under sampled
measurements. The second example is a bioreactor, following the
chemostat model, with positive state variables evolving on the
open first quadrant of ℜ

2. Applying the results of Section 3 leads
to a global exponential observer, with positive state estimates. The
Appendix contains the proofs of useful technical results.

Notation. Throughout this paper, we adopt the following nota-
tion.

* ℜ+ := [0, +∞).
* By C0(A; Ω), we denote the class of continuous functions on
A ⊆ ℜ

n, which take values in Ω ⊆ ℜ
m. By Ck(A; Ω), where

k ≥ 1 is an integer, we denote the class of functions on A ⊆ ℜ
n

with continuous derivatives of order k, which take values in
Ω ⊆ ℜ

m.
* By int(A), we denote the interior of the set A ⊆ ℜ

n.
* For a vector x ∈ ℜ

n, we denote by x′ its transpose and by |x| its
Euclidean norm. A′

∈ ℜ
n×m denotes the transpose of thematrix

A ∈ ℜ
m×n and |A| denotes the induced norm of the matrix

A ∈ ℜ
m×n, i.e., |A| = sup{|Ax|: x ∈ ℜ

m, |x| = 1}.
* A function V :ℜn

→ ℜ+ will be called positive definite if
V (0) = 0 and V (x) > 0 for all x ≠ 0. A function V :ℜn

→ ℜ+

will be called radially unbounded if the sets {x ∈ ℜ
n: V (x) ≤ M}

are either empty or bounded for allM ≥ 0.
* For a function V ∈ C1(A; ℜ), the gradient of V at x ∈

A ⊆ ℜ
n, denoted by ∇V (x), is the row vector ∇V (x) =

∂V
∂x1

(x) · · ·
∂V
∂xn

(x)

.

2. Systems with a globally asymptotically stable compact set

Consider the forward complete system (1.1) and (1.2). Ourmain
hypothesis in this section guarantees that there exists a compact
set which is robustly globally asymptotically stable (the adjective
robust means uniformity to all measurable and locally essentially
bounded inputs u:ℜ+ → U).

(H1) There exist a radially unbounded (but not necessarily positive
definite) function V ∈ C2(ℜn

; ℜ+), a positive definite function W ∈

C1(ℜn
; ℜ+), and a constant R > 0 such that the following inequality

holds for all (x, u) ∈ ℜ
n
× U with V (x) ≥ R:

∇V (x)f (x, u) ≤ −W (x). (2.1)

Indeed, hypothesis (H1) guarantees that, for every initial condition
x(0) ∈ ℜ

n, and for every measurable and locally essentially
bounded input u:ℜ+ → U , the solution x(t) of (1.1) enters the

compact set S = {x ∈ ℜ
n: V (x) ≤ R} after a finite transient

period, i.e., there exists T ∈ C0(ℜn
; ℜ+) such that x(t) ∈ S, for

all t ≥ T (x(0)). Moreover, notice that the compact set S =

{x ∈ ℜ
n: V (x) ≤ R} is positively invariant. This fact is guaranteed

by the following lemma, which is proved in the Appendix.

Lemma 2.1. Consider system (1.1) under hypothesis (H1) . Then
there exists T ∈ C0(ℜn

; ℜ+) such that, for every x0 ∈ ℜ
n, and for

every measurable and locally essentially bounded input u:ℜ+ →

U, the solution x(t) ∈ ℜ
n of (1.1) with initial condition x(0) =

x0 and corresponding to input u:ℜ+ → U satisfies V (x(t)) ≤

max (V (x0), R) for all t ≥ 0 and V (x(t)) ≤ R for all t ≥ T (x0).

Our second hypothesis guarantees that we are in a position to
construct an appropriate local exponential observer for system
(1.1) and (1.2).
(H2) There exist a symmetric and positive definite matrix P ∈ ℜ

n×n,
constants µ > 0, b > R, and a smooth mapping k:ℜn

× h(ℜn) ×

U → ℜ
n with k(ξ , y, u) = 0 for all (ξ , y, u) ∈ ℜ

n
×h(ℜn)×U with

h(ξ) = y such that the following inequality holds:

(ξ − x)′P (f (ξ , u) + k(ξ , h(x), u) − f (x, u))
≤ −µ |ξ − x|2 , for all u ∈ U, ξ , x ∈ ℜ

n with V (ξ) ≤ b
and V (x) ≤ R. (2.2)

Indeed, hypothesis (H2) in conjunction with hypothesis (H1)
guarantees that, for every x(0) ∈ S = {x ∈ ℜ

n: V (x) ≤ R}, and for
every measurable and locally essentially bounded input u:ℜ+ →

U , the solution of system (1.1) and (1.2) with

ξ̇ = f (ξ , u) + k(ξ , y, u) (2.3)

will satisfy an estimate of the form |ξ(t) − x(t)| ≤ M exp (−σ t)
|ξ(0) − x(0)|, for all t ≥ 0 for appropriate constants M, σ >
0, provided that the initial estimation error |ξ(0) − x(0)| is
sufficiently small. This is why system (2.3) is termed ‘‘a local
exponential observer’’. The reader should notice that hypothesis
(H2) holds automatically for nonlinear systems of the form

ẋ1 = f1(x1) + x2
ẋ2 = f2(x1, x2) + x3
... (2.4)
ẋn = fn(x1, . . . , xn) + u
y = x1
for every b > R > 0 and for every non-empty set U ⊆ ℜ

m, where
fi:ℜi

→ ℜ (i = 1, . . . , n) are smooth mappings.
In order to be able to construct a nonlinear exponential

observer for system (1.1) and (1.2), we need an additional technical
hypothesis.
(H3) There exist constants c ∈ (0, 1), R ≤ a < b such that the
following inequality holds:

∇V (ξ)(f (ξ , u) + k(ξ , h(x), u))
≤ −W (ξ) + (1 − c) |∇V (ξ)|2

×
(ξ − x)′P (f (ξ , u) + k(ξ , h(x), u) − f (x, u))

∇V (ξ)P(ξ − x)
for all u ∈ U, ξ , x ∈ ℜ

n with a < V (ξ) ≤ b,
∇V (ξ)P(ξ − x) < 0 and V (x) ≤ R. (2.5)

Hypothesis (H3) imposes constraints for the evolution of the
trajectories of the local observer (2.3). Indeed, inequality (2.5)
imposes a bound on the derivative of the Lyapunov function V ∈

C1(ℜn
; ℜ+) along the trajectories of the local observer (2.3) for

specific regions of the state space.
We are now ready to state and prove the main result of the

present section.



Download	English	Version:

https://daneshyari.com/en/article/756404

Download	Persian	Version:

https://daneshyari.com/article/756404

Daneshyari.com

https://daneshyari.com/en/article/756404
https://daneshyari.com/article/756404
https://daneshyari.com/

