
Parallel Navier–Stokes simulations for high speed compressible flow past
arbitrary geometries using FLASH

Benzi John ⇑, David R. Emerson, Xiao-Jun Gu
Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

a r t i c l e i n f o

Article history:
Received 15 November 2013
Received in revised form 4 December 2014
Accepted 7 December 2014
Available online 16 December 2014

Keywords:
FLASH code
Navier–Stokes
Hypersonic flow
Parallel

a b s t r a c t

We report extensions to the FLASH code to enable high-speed compressible viscous flow simulation past
arbitrary two- and three-dimensional stationary bodies. The body shape is embedded in a block-
structured Cartesian adaptive mesh refinement grid by implementing appropriate computer graphics
algorithms. A high mesh refinement level is required for an accurate body shape representation which
results in large grid sizes especially for three-dimensional simulations. Simulations are done in parallel
on IBM Blue Gene/Q computing system on which the code performance has been assessed in both pure
MPI and hybrid MPI-OpenMP modes. We also implement appropriate wall boundary conditions in
FLASH to model viscous-wall effects. Navier–Stokes (NS) solutions for various two-dimensional test
cases like a shock–boundary layer interaction problem as well as for hypersonic flow past blunted
cone–cylinder–flare and double-cone geometries are shown. Three dimensional NS simulations of micro
vortex generators employed in hypersonic flow control have also been carried out and the computed
results have been found to be consistent with experimental results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The FLASH code [1] developed at the Flash center at the Univer-
sity of Chicago is an open-source code with a wide user base. It was
originally designed for application to astrophysics problems like
super novae, galaxy clusters and stellar structure. More recently
the code has also been used to study High Energy Density Physics
(HEDP) problems like laser-driven fusion experiments. The FLASH
software system [2,3] follows a modular structure consisting of
several inter-operable modules like hydrodynamic, material prop-
erty and nuclear physics solvers that can be combined to solve var-
ious problems in cosmology, high energy density physics, etc. The
compressible hydrodynamics code has already been validated for
typical benchmark problems like the Sod shock tube test case
and the classic wind tunnel step problem [4] by solving the inviscid
hydrodynamic (Euler) equations. However, it has not yet been
applied to practical high-speed CFD applications mainly due to
the fact that it relies on a block-structured adaptive mesh refine-
ment scheme using Cartesian cells to generate the grid. The inher-
ent Cartesian grid structure means that special schemes need to be
devised to embed geometries of arbitrary shape in the flow
domain. Also, FLASH originally being designed as an astrophysics

code is not designed to simulate any viscous wall effects. It has
not yet been applied for any compressible Navier–Stokes CFD sim-
ulations for flow past arbitrary body shapes, to the best of our
knowledge. The FLASH code is modular and extensible which
enables users to extend its functionality for their own applications.
It has one of the best adaptive mesh compressible hydrodynamics
solvers among various open source CFD codes and methodologies
to extend its capability for hypersonic flow simulation past arbi-
trary geometries will be beneficial and of interest to the hypersonic
flow community. FLASH is also a scalable parallel code currently
featuring both MPI and hybrid MPI-OpenMP modes and stands in
good stead in comparison with other codes and parallelization
methods [5–8].

The latest version of FLASH (FLASH 4) [1] includes a strategy to
incorporate stationary rigid bodies in a computational domain. The
solid body is essentially treated as part of the fluid domain and a
reflecting boundary condition is applied at the solid/fluid interface.
The surface of the rigid body is represented by stair steps due to
the regular Cartesian grid structure in FLASH. This scheme, how-
ever, can be done only for simple rectangular, spherical or any
other shape that can be represented by an analytical expression,
which implies that arbitrary complex geometries for real CFD
applications cannot be handled currently. In this work, we extend
this scheme to generate grids around arbitrary two-dimensional
(2D) or three-dimensional (3D) geometric shape by implementing

http://dx.doi.org/10.1016/j.compfluid.2014.12.008
0045-7930/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: benzi.john@stfc.ac.uk (B. John).

Computers & Fluids 110 (2015) 27–35

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.12.008&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2014.12.008
mailto:benzi.john@stfc.ac.uk
http://dx.doi.org/10.1016/j.compfluid.2014.12.008
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


appropriate computer graphics algorithms in FLASH. We also
invoke the material property-viscosity module in FLASH to solve
the Navier–Stokes equations. Additionally, we implement the no-
slip wall boundary conditions and Sutherland’s law of viscosity
to accurately model viscous-wall effects. A brief discussion of this
implementation and preliminary flow results were reported by the
authors in [9]. In this work, we elaborate on this and carry out
additional Navier–Stokes simulations for several two-dimensional
test cases as well as a three-dimensional viscous simulation of
micro vortex generators employed in hypersonic flow control.

2. Numerical method

The FLASH code has two compressible gas hydrodynamic solvers
[1] based on the Finite Volume Method (FVM), built around differ-
ent operator splitting methods, viz. directionally split and unsplit
solvers. They solve the standard compressible Navier–Stokes
equations for continuity, momentum and energy, with the pressure
field determined from the equation of state [1]. The split solver is
based on the piecewise parabolic method (PPM) [10], which is
essentially a higher order version of the Godunov scheme. The
directionally unsplit solver [11–13] is based on a Monotone
Upstream-centered Scheme for Conservation Laws (MUSCL) Hancock
type second-order scheme. The unsplit hydro implementation can
solve 1D, 2D and 3D problems with added capabilities of exploring
various numerical implementations: different types of Riemann
solvers; slope limiters; first, second, third and fifth order recon-
struction methods as well as a strong shock/rarefaction detection
algorithm. One of the notable features of the unsplit hydro scheme
is that it particularly improves the preservation of flow symmetries
as compared to the splitting formulation. Also, the scheme used in
this unsplit algorithm can take a wide range of CFL stability limits
for all three dimensions when compared to the directionally split
algorithm [11–13].

Grid generation in FLASH is mainly based on a block-structured
adaptive mesh refinement (AMR) scheme using PARAMESH [14]. In
block-structured AMR, the fundamental data structure is a block of
cells arranged in a logically Cartesian fashion, which implies that
each cell can be specified using a block identifier (processor num-
ber and local block number) and a coordinate triple (i, j, k), where i,
j and k refer to cell number in the x-, y-, and z-directions, respec-
tively. PARAMESH handles the filling of guard cells that surrounds
each block with information from other blocks or, at the bound-
aries of the physical domain from an external boundary routine.
If the neighbor block has a different level of refinement, the data
from the neighbor’s cells is adjusted by either prolongation (inter-
polation from a coarse to finer level of resolution) or restriction
(averaging from a fine to a coarser level). PARAMESH also enforces
flux conservation at jumps in refinement across block boundaries,
as described by Berger and Colella [15].

In this work, we implement a computer graphics algorithm in
FLASH to enable the generation of random complex three dimen-
sional shapes that represents a rigid body. The algorithm is based
on a point-in-polyhedron test using spherical polygons proposed
by Carvalho and Cavalcanti [16] coded by John Burkardt. The
algorithm determines if a given point is inside or outside a three-
dimensional polyhedron based on a method using spherical poly-
gons. The user needs to define all faces of the 3D geometry by
specifying the co-ordinate points of each face listed according to
the orientation with respect to the outward normal at that face
as input to the algorithm. Each face of the polyhedron is then pro-
jected onto a unit sphere and the resulting signed area of the
spherical polygon thus formed, determines whether the point is
inside or outside the polyhedron. A new variable called bdry_var
is defined and is specified as an adaptive mesh refinement (AMR)
variable for all the grid points. The grid points of the computational

domain computed to be outside the solid body represents the fluid
domain, while those inside represents the solid domain. The values
of bdry_var for all grid points within the fluid domain are assigned
negative values, while those falling within the solid domain are
assigned positive values. An illustration of the demarcation
between fluid and solid regions in an AMR Cartesian grid is shown
in Fig. 1. The fluid/solid interface represents the wall at which
appropriate wall boundary conditions should be imposed. An
advantage of this scheme is that mesh generation is fairly simple
and extremely quick as there is no time consuming phase associ-
ated with surface mesh generation and the associated volume
mesh. A limitation of this scheme is that, as the grid is non-
body-fitted, the body shape is represented by stair steps. A high
level of refinement is needed to accurately represent a shape which
can result in very large grid sizes for 3D simulations. This can be
resolved to a great extent by resorting to high performance parallel
computing.

We have also implemented the no-slip boundary condition at
the wall (fluid/solid interface) in FLASH to model viscous-wall
effects [17]. Boundary conditions in FLASH need to be handled with
the aid of guard cells in each coordinate direction which surrounds
each block of local data. The data need to be carefully set such that
fluxes at the boundary are physically correct. The ghost cell adja-
cent to the wall is denoted by g whereas the cell inside the compu-
tational domain is denoted by 1. The velocity components (u, v, w)
and pressure p in the ghost cells are set as:

ug ¼ 2Vw � u1

vg ¼ �v1

wg ¼ �w1

pg ¼ þp1

ð1Þ

where Vw is the wall velocity. For adiabatic wall boundary condi-
tions, the density gradient in the normal direction vanishes and
hence density, q can be specified as

qg ¼ þq1 ð2Þ

For an isothermal wall, density and energy e can be specified as

qg ¼ 2qw � q1

eg ¼ 2ew � e1
ð3Þ

The Sutherland’s law of viscosity [11] has been implemented in
FLASH to model the variation of absolute viscosity with
temperature.

Fig. 1. AMR Cartesian grid demarcating the solid domain (denoted in red color) and
fluid domain. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

28 B. John et al. / Computers & Fluids 110 (2015) 27–35



Download English Version:

https://daneshyari.com/en/article/756410

Download Persian Version:

https://daneshyari.com/article/756410

Daneshyari.com

https://daneshyari.com/en/article/756410
https://daneshyari.com/article/756410
https://daneshyari.com

