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a b s t r a c t

Grid reordering is an efficient way to obtain better implicit convergence speed in viscous flow simulation
based on unstructured grids. When performing parallel computation on the shared memory machines,
the convergence performance for solving high-Reynolds number flow with LU-SGS implicit scheme is
ruined by the interface between different sub-domains divided by OpenMP parallelization. In order to
improve the compatibility between OpenMP parallel environment and the implicit LU-SGS time-stepping
scheme, a grid reordering method for unstructured hybrid grids is proposed. In this method, the
structured-grid cells in the viscous layer near-body surface are reordered along the normal direction (like
columns) and the unstructured part is reordered layer by layer according to the neighboring relations. To
investigate the performance of the current implementation, turbulent flows around the RAE2822 airfoil,
the NHLP-2D L1T2 multi-element airfoil configuration, the DLR-F6 wing–body–nacelle–pylon configura-
tion and an aerospace plane has been simulated on unstructured hybrid grids. The numerical results
show that the grid reordering method is an efficient and practical strategy for improving the convergence
rate and the overall efficiency in the parallel computation with unstructured flow solver.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With the fast development in the field of computational fluid
dynamics (CFD), research topics in this area have become more
and more complex. As a result, the computational requirements
have increased so rapidly that even the existing computing tech-
nology is far from being able to meet this requirement. Parallel
computing [1–3] has become an inevitable choice to perform these
extensive numerical computations. The open multi-processing
(OpenMP) [4–6] which is based on the shared-memory platform
and the message passing interfaces (MPI) [7–9] based on mas-
sage-passing platform are the two key standards usually adopted
for parallelization. In calculations based on the MPI environment,
the mesh is parted into several sub-domains and allocated to dif-
ferent processors. The data at the interface passes between neigh-
boring sub-domains. However, for OpenMP, which is based on the
shared-memory platform, there is no need to part the mesh geo-
metrically or transfer information between different sub-domains,
which ensures load balancing, saves the communication costs and
is simpler to be programmed. For complex geometries, the
demands of rational domain decomposition are always challenges

for the MPI technology. In comparison, OpenMP does not possess
this problem. By contrast, MPI is mostly used on distributed mem-
ory systems. The hybrid MPI/OpenMP approach [10,11] is widely
applied in hierarchical machine model, in which MPI is used for
communication across distributed memory nodes and OpenMP is
used for fine-grained parallelization within a node. However, for
shared memory systems, OpenMP is more convenient and efficient
than MPI.

At the same time, the complexity of the geometry augmented
the use and development of the hybrid unstructured grid technol-
ogy [12–14]. For unstructured hybrid grids, structured or semi-
structured grid cells are utilized to resolve viscous boundary layers
and unstructured-grid cells are employed elsewhere [15]. The use
of hybrid grids combines the geometric flexibility offered by
unstructured grids and the numerical accuracy of the structured
grids. This meshing technique offers the potential of attaining a
balance between mesh quality, efficiency, and flexibility.

Although the unstructured grids are flexible in their use but a
negative factor is also associated with them. The data storage of
unstructured grids is random, which has negative impacts on the
convergence behavior of the computation.

To achieve a better cell order, grid reordering has been
employed by many researchers and has been proven to be effec-
tive. Löhner [16] discussed several reordering strategies leading
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to a minimization of cache-misses and an optimal grouping of ele-
ments for different computer platforms. Martin and Loehner [17]
used a linelet-preconditioner for an implicit finite element solver
to propagate information in a fast way to the boundaries and
obtains rapid convergence rates. The lower–upper symmetric
Gauss–Seidel (LU-SGS) time-marching method [18] is a very effi-
cient method for structured grids and has been used by some
authors with unstructured grids. Sharov and Nakahashi [19] pro-
posed a grid reordering method which improves the balance
between lower and upper matrices. When performing large-scale
parallel computation on the shared memory machines, the order
of the cells (edges for edge-based solvers) affects the task assign-
ment and has a great influence on the parallel efficiency. Aubry
et al. [20] presented reordering methods which guarantee that
nodes belonging to one thread are not accessed by other threads
for vertex-centered discretizations. Löhner [21] described renum-
bering techniques based on shared-memory, cache-based parallel
machines to avoid cache-misses and cache-line overwrite and
gained good results. They found computational efficiency on
the shared memory machines was greatly improved by grid
reordering.

The convergence performance for solving high-Reynolds num-
ber flow with LU-SGS implicit scheme is ruined by the interface
between different sub-domains divided by OpenMP parallel envi-
ronment. As the parallel thread count increases, the interface is
enlarged and its side effect on the convergence performance
becomes more serious. For the cells in boundary layer, which have
high aspect ratios, the neighboring cells along the normal direction
contribute much to the residuals and implicit system. If neighbor-
ing cells along the normal direction are computed in different par-
allel processors, the convergence rate will decrease significantly.
With regard to this situation, we present a grid reordering method
to avoid the side effect from parallelization.

The paper is organized as follows. Section two introduces the
numerical methods used for computations and presents the grid
reordering method in detail. In section three, the technique is
tested for various two and three dimensional aerodynamic config-
urations. The simulation results prove the feasibility of the pro-
posed method.

2. Numerical methods

The proposed method has been implemented in an in-house
flow solver HUNS3D [22], developed for viscous flows based on
hybrid unstructured meshes.

2.1. Governing equation

The integral form of non-dimensionalized three-dimensional
unsteady Reynolds averaged Navier-Stokes (RANS) equations can
be written as:
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where X is the control volume; oX is the boundary of the control
volume; Q is the conservative variable; F(Q) is the inviscid flux;
and the right side is the viscous term. Using the cell-centered finite
volume method, the semi-discretization form of Eq. (1) can be
expressed as:

Xi
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where Xi represents volume of cell i, residual term Ri(Q) is the
summation of inviscid and viscous flux terms on all faces of cell i.

2.2. LU-SGS scheme

Eq. (2) is a system of coupled ordinary differential equations in
time. By using the backward Euler scheme for the implicit time
integration, we obtain
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where the superscript n represents the number of time level. Since
Qn+1 is unknown on current time level, the residual Ri(Qn+1) cannot
be evaluated directly. However, it can be linearized by using first
order Taylor expansion in the following way:
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where C(i) is the set of cell i and its neighbor cells. After Ri(Qn+1) in
Eq. (3) is substituted by the linearization term in Eq. (4), then the
following implicit system is obtained:
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The HUNS3D flow solver uses an improved LU-SGS scheme for
solving the above equation system, details of which could be found
in Ref. [23]. By using the LU-SGS scheme, the expression becomes
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where j is the cell adjacent to cell i; kij is the maximum eigenvalue
of Jacobi matrix on the cell face and D is the diagonal matrix
expressed as:
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2.3. Grid reordering method

As seen from Eqs. (6) and (7), the LU-SGS scheme requires two
sweeps: forward sweep through cell numbers from 1 to N and
backward sweep in a reverse loop. In case of forward sweep
(lower), summation for cell i is over all surrounding cells whose
number is less than i. Backward sweep (upper) is summation over
surrounding cells whose number exceed the current cell number. If
some cells are surrounded by only those cells whose numbers are
greater (lesser) than current cell number, the local iterations will
degenerate from Gauss–Seidel iterations to Jacobi iterations [19].
In other words, the lower/upper balance of the method highly
depends on grid numbering.

In this work, we employ static scheduling in the parallel com-
putation for its advantages of lower scheduling overhead, less data
race [24,25] and less cells at the interfaces between different sub-
domains compared to dynamic scheduling and guided scheduling.
By the static scheduling, the grids are divided averagely into M
sub-domains in accordance with the cell indexes and allocated to
M processors. According to the assignment characteristics of the
static scheduling, we design the grid reordering method making
the cells in the same processor more centralized in spatial position
to reduce the number of cells at the interfaces. The reduction on
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