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a b s t r a c t

In the algebraic system theory of delay systems, it is well known that under spectral controllability or
canonicity, a Bezout equation set up with a coprime pair of 2-D polynomial matrices has a solution in
polynomial matrices with coefficient belonging to a ring of entire functions. We propose a new method
for solving such Bezout equations. The basic concept involves the reduction of a Bezout equation over 2-D
polynomial matrices to a simple scalar equation over 1-D polynomials. Due to the basic concept, it can be
used to calculate a solution even by hand and is particularly efficient in the absence of modern computer
algebra systems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

One important application of multidimensional system theory
over two-dimensional (2-D) polynomial matrices is delay system
theory, in which the two variables are the Laplace operator s and
the delay operator z with the delay-time L. Unlike the general 2-D
system theory, delay system theory uses the relation z(s) = e−Ls

between the two variables. Based on this relation, a ring of entire
functions was introduced in [1] for deriving an advanced control
of delay systems, such as finite spectrum assignment [1,2]. It was
shown in [2] that under spectral controllability or canonicity [3],
a Bezout equation set up with a coprime pair of 2-D polynomial
matrices has a solution in polynomial matrices with coefficients
belonging to a ring of entire functions. In contrast, in the general
2-D case, the solvability of the Bezout equation over the ring
of polynomial matrices requires zero coprimeness [4], which is
stronger than minor and factor coprimeness [4–6].

A solution to the Bezout equation using the ring of entire
functions has been widely used in the control design for delay
systems. For example, its application to state feedback design was
presented in [2]. In addition, a solution to the Bezout equation has
been used not only in finite spectrum assignment, such as in [7,8],
but also in repetitive control [9].

This paper proposes a new method for solving such Bezout
equations over 2-D polynomial matrices, in which their solutions
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are obtained in 2-D polynomial matrices with coefficients be-
longing to the ring of entire functions. The basic concept of the
proposed method is that we reduce a Bezout equation over 2-D
polynomial matrices to a simple scalar equation over one-
dimensional (1-D) polynomials.

As the dimensions of a Bezout equation (i.e., the dimensions of
an identity matrix on the right-hand side) increase, the difficulty
and amount of matrix calculations increases in general. However,
due to the basic concept, the proposed method does not directly
depend on the dimensions of the Bezout equation. That is, we
reduce calculations on 2-D polynomial matrices to simple ones on
1-D polynomials. Thus, we can simplify calculations themselves
and can reduce the amount of the calculations.

Generally speaking, a Bezout equation over 2-D polynomial
matrices becomes solvable over polynomials by the introduction
of auxiliary variables, such as the entire functions in this paper,
which allow us to divide by a ‘‘key polynomial’’ in s using Gröbner
bases [10]. As the degree of the key polynomial increases, the
number of the auxiliary variables increases. Thus, the difficulty
of matrix calculations increases, and modern computer algebra
systems such as SINGULAR [10,11] are of absolute necessity.
However, the proposed method does not directly depend on the
degree of the key polynomial. It can be used to calculate a solution
even by hand and is particularly efficient in the absence of such
modern computer algebra systems.

During the last 20 years, no new solution methods for Bezout
equations over 2-D polynomial matrices have been published
in the field of control theory. Significant effort has been spent
on applications of solutions to such Bezout equations to control
system design rather than on improvements of the existing
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solution methods. On the other hand, especially in the field of
polynomial algebra, significant effort has been spent on finding
solution methods for a more general class of algebraic equations.
The Bezout equations considered in this paper can be solved by
such methods, e.g., Gröbner basis methods. Moreover, modern
computer algebra systems that assist polynomial computations
have also been developed, e.g., SINGULAR.

Against such a background, the main contribution of this paper
is the expansion of the selection scope of solution methods.
Conventionalmethods (including Gröbner basismethods) are used
for directly solving a given Bezout equation. On the other hand,
the proposed method is based on the reduction of a given Bezout
equation over 2-D polynomial matrices to a simple scalar equation
over 1-D polynomials. This is a fundamentally new approach,
which can supplement the solution methods for a general class
of algebraic equations in the field of polynomial algebra. For
example, Gröbner basis methods are now only used for obtaining
the indispensable equation for the reduction (see Section 4.1).

The following notations are used in this paper: R and C: the
fields of real and complex numbers. i: the imaginary unit. c: the
complex conjugate of c ∈ C. Y[x1, x2]: the ring of polynomials in
x1 and x2 with coefficients in Y. Yℓ×m: the set of ℓ × m matrices
with elements in Y. R(x): the field of real rational functions in x.
R(x)[y]: the ring of polynomials in ywith coefficients inR(x). degx:
the degree in x of a polynomial. E: an identitymatrix of appropriate
dimensions. 0: a zero matrix of appropriate dimensions. tA: the
transposed matrix of A.

2. Problem statement

2.1. Minor coprimeness of 2-D polynomial matrices

We first define the minor left coprimeness of 2-D polynomial
matrices, which is the basis of the discussion.

Definition 2.1 ([4]). Suppose P ∈ (R[s, z])ℓ×ℓ and Q ∈

(R[s, z])ℓ×m. (P,Q ) is said to be a ‘‘minor left coprime pair’’ if the
greatest common polynomial divisor (gcd) of all the ℓ × ℓminors
of


P Q


is a nonzero constant. Suppose M ∈ (R[s, z])ℓ×m and

N ∈ (R[s, z])m×m. (M,N) is said to be a ‘‘minor right coprime pair’’
if (tM, tN) is a minor left coprime pair.

The variables s and z are assumed to be the Laplace operator and
the delay operator with the delay-time L, i.e., z : f (t) −→ f (t−L),
respectively.

The following proposition demonstrates how minor coprime-
ness of (P,Q ) is related to elementary operations on the matrix
P Q


:

Proposition 2.1 ([4]). Suppose P ∈ (R[s, z])ℓ×ℓ and Q ∈

(R[s, z])ℓ×m. (P,Q ) is a minor left coprime pair if and only if the
following conditions are simultaneously satisfied:
(i) There exist U1 ∈ (R[s, z])ℓ×ℓ,U2 ∈ (R[s, z])m×ℓ, and α (≠ 0) ∈

R[s] such that
PU1 + QU2 = αE. (2.1)

(ii) There exist V1 ∈ (R[s, z])ℓ×ℓ,V2 ∈ (R[s, z])m×ℓ, and β (≠ 0) ∈

R[z] such that
PV1 + QV2 = βE. (2.2)

We assume that α and β are the monic polynomials of minimal
degree satisfying (2.1) and (2.2), respectively. The matrix


P Q


can be reduced to


E 0


through finitely many elementary

operations over R(s)[z] and R(z)[s] to obtain (2.1) and (2.2),
respectively.

Generally speaking, a Bezout equation over 2-D polynomial
matrices becomes solvable over polynomials by the introduction
of auxiliary variables, such as the entire functions in Section 2.2,
which allow us to divide by a key polynomial in s in a specific way.
The α in (2.1) is the key polynomial in this case.

2.2. Ring of entire functions

Define

Θ0 =


a,

dkθa
dsk

,
dk

dsk

θc + θc


,

dk

dsk

i(θc − θc)

 a ∈ R,

c ∈ C \ R, k = 0, 1, 2, . . .


, (2.3)

where θc is the entire function

θc =
1 − e−L(s−c)

s − c
=

1 − eLcz(s)
s − c

, c ∈ C (2.4)

and z(s) = e−Ls is the Laplace transform of the delay operator z.
LetΘ denote the commutative ring generated byΘ0 with obvious
addition and multiplication. The ringΘ was used in [2].

2.3. Bezout equation

We define the problem as follows.

Problem 2.1. Suppose that P ∈ (R[s, z])ℓ×ℓ,Q ∈ (R[s, z])ℓ×m,
and (P,Q ) is a minor left coprime pair. In addition, suppose that
(P,Q ) satisfies

rank

P(s, e−Ls) Q (s, e−Ls)


= ℓ, ∀s ∈ C. (2.5)

Then, find a solution (X, Y ) to the Bezout equation

P(s, e−Ls)X(s, e−Ls)+ Q (s, e−Ls)Y (s, e−Ls) = E, (2.6)

where X ∈ (Θ[s, z])ℓ×ℓ, and Y ∈ (Θ[s, z])m×ℓ.

Consider a delay system with the state–space equation

dx(t)
dt

= Ax(t)+ Bu(t), (2.7)

where x(t) ∈ Rℓ is the state variable vector, u(t) ∈ Rm is the
input, A ∈ (R[z])ℓ×ℓ, and B ∈ (R[z])ℓ×m. Condition (2.5) with
(P,Q ) = (sE − A, B) implies that the system (2.7) is spectrally
controllable [2].

Also, consider a left coprime factorization D−1N of the
input–output transfer function of a delay system, where D ∈

(R[z])ℓ×ℓ and N ∈ (R[z])ℓ×m. This factorization corresponds to
the input–output relation

Dy(t) = Nu(t), (2.8)

where y(t) ∈ Rℓ is the output and u(t) ∈ Rm is the input.
Condition (2.5) with (P,Q ) = (D,N) implies that the systemwith
the input–output relation (2.8) is spectrally canonical [3].

2.4. Related zero pairs and rank condition

We first introduce the following definition:

Definition 2.2. For a given minor left coprime pair (P,Q ),
consider (2.1) and (2.2). (s, z) = (sj, e−Lsj) is called a ‘‘related zero
pair’’ if it satisfies α(sj) = 0 and β(e−Lsj) = 0, where sj ∈ C and
j = 1, 2, . . . .

The following proposition implies that Condition (2.5) in the
entire complex plane can be reduced to the rank condition on
finitely many possible related zero pairs. This proposition is
indispensable for clarifying the basic concept of the proposed
method.
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