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a b s t r a c t

We establish the existence of the time optimal control for semilinear parabolic equations with gradient
quadratic growth via bilinear controls. It is worth pointing out that there is no restriction on the growth
of the nonlinearity f (s) with respect to the variable s in the equation, which is a remarkable difference
compared to the semilinear parabolic systemwith locally distributed controls. The technique used in this
paper is the combination of the Hopf–Cole transformation, the a prior estimates on solutions of parabolic
equations and the strategy of the stepwise control.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let Ω be a bounded domain of RN with C2 boundary ∂Ω
and ω ⊂ Ω be a nonempty subdomain. Consider the following
controlled semilinear parabolic system:yt −1y + a|∇y|2 = 1ωu(f (y)− θ) in Q∞,

y(x, t) = 0 onΣ∞,
y(x, 0) = y0(x) inΩ,

(1.1)

where Q∞ = Ω× (0,∞),Σ∞ = ∂Ω× (0,∞), a is a constant, 1ω
is the characteristic function of ω, y0 ∈ L∞(Ω), θ ∈ L∞(Q∞) and
f ∈ C(R) are given functions.

Eq. (1.1) with u ≡ 0 arises in stochastic optimal control
theory (see [1, p. 194]). In the context of heat-transfer the term
u(x, t)(y(x, t) − θ(x, t)) is used to describe the heat exchange at
point (x, t) of the given substance with the surrounding medium
of temperature θ according toNewton’s Law (see [2, pp. 155–156]).

Let u be a control taken from a given set

Uρ = {u; u ∈ L∞(Q∞), |u| ≤ ρ a.e. in Q∞}, (1.2)

where ρ > 0 is an arbitrary but fixed positive constant.
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In this paper, we shall study the following time optimal control
problem:

(P) min{T ; y(·, T ) = 0 a.e. inΩ, u ∈ Uρ and y is
the solution to (1.1) corresponding to u}.

A function u ∈ Uρ is called admissible if the corresponding
solution y to (1.1) satisfying y(·, T ) = 0 a.e. inΩ for some T > 0.
T ∗(ρ) , min{T ; y(·, T ) = 0 a.e. inΩ, u ∈ Uρ} is called the
minimal time for (P) and a control u∗

∈ Uρ such that y∗(·, T ∗(ρ)) =

0 a.e. inΩ is called a time optimal control.
The time optimal control problem was studied first for the

finite-dimensional case (cf. [3]). Thereafter, the problem was
developed to infinite-dimensional controlled systems (cf. [4,5]).
In [6], the time optimal control problem for some controlled
parabolic variational inequalities was investigated. However, the
method used in [6] is suitable only for the casewhere the control is
distributed in thewhole domainΩ . In [7], the time optimal control
was obtained for the equation

yt −1y + f (y) = 1ωu in Q∞, (1.3)

where the control u acts only on a local domain ω, and the aim
function is the steady-state solution ye to (1.3), i.e., −1ye(x) +

f (ye(x)) = 0 inΩ and ye(x) = 0 on ∂Ω .
As is shown in [7], the key to get the existence of a time

optimal control is to show the existence of an admissible control
which is related to a type of controllability of the equation with
some kind of control constraint. It is well known that a rather
general class of semilinear parabolic systems is approximate and
null controllable by locally distributed controls (cf. [8–13] and the
references therein).
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Denote QT = Ω × (0, T ) and ΣT = ∂Ω × (0, T ). In [14], the
authors considered the following parabolic system with nonlinear
term involving the state and the gradientyt −1y + f (y,∇y) = 1ωu in QT ,
y(x, t) = 0 onΣT ,
y(x, 0) = y0(x) inΩ,

(1.4)

where f (s, p) is locally Lipschitz-continuous and can be rewritten
as f (s, p) = f (0, 0) + g(s, p)s + G(s, p) · p for some L∞

loc
functions g and G. They proved the exact null controllability and
the approximate controllability for the system (1.4) under the
following hypothesis

lim
|(s,p)|→∞

|g(s, p)|
log3/2(1 + |s| + |p|)

= 0

and

lim
|(s,p)|→∞

|G(s, p)|
log1/2(1 + |s| + |p|)

= 0.

Therefore, in order to obtain the existence of the time optimal
control for (1.3) in [7], the growth of the nonlinearity f (s) with
respect to the variable s should satisfy some constraint conditions.

Note that (1.1) is a bilinear (or multiplicative) control system,
in which there is only one control function u, but it acts both
on the right-hand side function θ and on the coefficient of state
function. This is quite different from the traditionally additive
locally distributed control systems (1.3) and (1.4). On the other
hand, it is easy to see that (1.1) cannot be included in (1.4) because
of the quadratic growth for the gradient.

For bilinear systems, the dependence of the state function with
respect to the control function is highly nonlinear. This leads to
many difficulties in the study of bilinear control systems. In fact,
little is known about the time optimal control problem of (1.1), by
our knowledge. As to the controllability problem, we refer to the
early papers [15,16] on the abstract, infinite dimensional system.
We also refer to the pioneering works by Lenhart and her co-
authors on bilinear optimal controls (cf. [17,18]). Among recent
achievements, let us mention the results [19–22] and the book of
Khapalov [23] (see also the references therein).

Our goal in this paper is to prove the existence of the time
optimal control for (1.1) when the bilinear control acts on any local
domain ω ⊂ Ω . It is worth pointing out that there is no restriction
on the growth of the nonlinearity f (s)with respect to the variable
s in our proofs, which is a remarkable difference compared to the
semilinear systems (1.3) and (1.4).

The paper is organized as follows. In Section 2, we prove
the well-posedness of (1.1). The null controllability of (1.1) is
established in Section 3. Finally,we obtain the existence of the time
optimal control in Section 4.

2. Existence and uniqueness of solutions

Since no growth restriction is imposed on the nonlinearity f (s),
in general, (1.1) has no a globally defined (in time) solution, and the
solution may blow up in finite time. Therefore, we need to study
the existence time of the local solution. Throughout this paper, we
investigate the weak solution.

Given a ≠ 0. Consider the following problem
zt −1z + a1ωuf


−

1
a
ln z


z − a1ωuθz = 0 in QT ,

z(x, t) = 1 onΣT ,

z(x, 0) = e−ay0(x) inΩ.

(2.1)

As in [24], we denote by W̊ 1,0
2 (QT ) and W̊ 1,1

2 (QT ) two standard
Sobolev spaces. We say z is a weak solution of (2.1), if z − 1 ∈

W̊ 1,0
2 (QT ) ∩ L∞(QT ) and the integral equality
QT


−zϕt + ∇z · ∇ϕ + a1ωuf


−

1
a
ln z


zϕ

− a1ωuθzϕ


dxdt =


Ω

z(x, 0)ϕ(x, 0)dx (2.2)

is fulfilled for any test function ϕ ∈ W̊ 1,0
2 (QT ) with ∂ϕ

∂t ∈ L1(QT )
and ϕ(·, T )|Ω = 0.

Lemma 2.1. Let y0 ∈ L∞(Ω) and θ ∈ L∞(Q∞). Assume that f ∈

C(R), f (0) = 0 and f (s) is Lipschitz continuous on [−M,M] for any
0 < M < ∞. Then there exists a constant ε0 depending on f , θ and
y0, such that if ∥u∥L∞(Q∞) ≤ ε0, then (2.1) admits uniquely a weak
solution in QT0 = Ω × (0, T0), which satisfies

0 < M0 = ess inf
QT0

z < ess sup
QT0

z = M1 < ∞ in QT0 , (2.3)

where T0 is a constant and T0 ≥ 1.

Proof. Consider the following problemwt −1w = a1ωuF(w) in QT ,
w(x, t) = 0 onΣT ,

w(x, 0) = w0(x) = e−ay0(x) − 1 inΩ,
(2.4)

where

F(w) = −f


−
1
a
ln(w + 1)


(w + 1)+ θ(w + 1).

Clearly, if w ∈ W̊ 1,0
2 (QT ) ∩ L∞(QT ) is the weak solution of (2.4),

then z = w + 1 is the weak solution of (2.1).
Let {jn}+∞

n=1 be a standard mollifying sequence in R, namely,
jn(s) =

1
n j(

s
n )with j(s) ≥ 0, j(s) ∈ C∞

0 (R), supp j(s) ⊂ [−1, 1] and
+∞

−∞
j(s)ds = 1. For fixed u, θ ∈ L∞(Q∞), consider the following

problem
wt −1w = aunFn(w) in QT ,
w(x, t) = 0 onΣT ,

w(x, 0) = w
(n)
0 (x) inΩ.

(2.5)

We define Fn, un, θn andw(n)0 as follows. Put

Fn(s) = jn ∗ max(−n,min(F(τ ), n))

,


R
jn(s − τ)max(−n,min(F(τ ), n))dτ .

It is easily verified that Fn ∈ C∞(R) and |Fn| ≤ n. Similarly, we
can define un and θn by using the above convolution operator ∗.
For example, define

un(x, t) =


RN+1


1≤i≤N

jn(xi − yi)jn(t − τ)

· max(−n,min(1ωu(y, τ ), n))dydτ .

Then un ∈ C∞(Q∞)with un ≡ 0 inωn ×R+, whereωn = {x ∈ Ω \

ω; dist(x, ω) < 1
n }, and for any p ∈ [1,+∞), ∥un − 1ωu∥Lp(Q∞) →

0 as n → ∞. Likewise, θn ∈ C∞(Q∞), and ∥θn − θ∥Lp(Q∞) → 0 as
n → ∞.

Let ŵ0n(x) = 0 if x ∈ Ω and dist(x, ∂Ω) < 2/n, and ŵ0n(x) =

w0(x) if x ∈ Ω and dist(x, ∂Ω) ≥ 2/n. Denote

w
(n)
0 (x) =


RN


1≤i≤N

jn(xi − yi)ŵ0n(y)dy.
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