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a b s t r a c t

We employ a Lagrangian–Lagrangian (LL) numerical formalism to study two- and three-dimensional (2D,
3D) pipe flow of dilute suspensions of macroscopic neutrally buoyant rigid bodies at flow regimes with
Reynolds numbers (Re) between 0.1 and 1400. A validation study of particle migration over a wide spec-
trum of Re and average volumetric concentrations demonstrates the good predictive attributes of the LL
approach adopted herein. Using a scalable parallel implementation of the approach, 3D direct numerical
simulation is used to show that (1) rigid body rotation affects the behavior of a particle laden flow; (2) an
increase in neutrally buoyant particle size decreases radial migration; (3) a decrease in inter-particle dis-
tance slows down the migration and shifts the stable position further away from the channel axis; (4)
rigid body shape influences the stable radial distribution of particles; (5) particle migration is influenced,
both quantitatively and qualitatively, by the Reynolds number; and (6) the stable radial particle concen-
tration distribution is affected by the initial concentration. The parallel LL simulation framework devel-
oped herein does not impose restrictions on the shape or size of the rigid bodies and was used to simulate
3D flows of dense, colloidal suspensions of up to 23,000 neutrally buoyant ellipsoids.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The topic of particle migration has been of great interest since
Segre and Silberberg experimentally investigated the pipe flow of
a dilute suspension of spherical particles and demonstrated that,
at a pipe Reynolds number (Re) between 2 and 700, the particles
settle on an annulus with an approximate relative radius of 0.6
with respect to the pipe radius [64,65]. Subsequent experiments
conducted by Oliver [53], Jeffrey and Pearson [32], and Karnis
et al. [34] confirmed and further investigated the particle radial
migration. For dilute suspensions, Matas et al. [42] showed exper-
imentally that the radius of stable annulus increases directly with
Re. At a high Reynolds number, Re > 650, they observed the forma-
tion of an inner annulus of smaller radius that had not been pre-
dicted analytically or observed through simulation. Moreover,
they showed that the probability of a particle settling on this annu-
lus of smaller radius increases with the Reynolds number. From an
analytical perspective, perturbation methods have been widely
employed to investigate the lift force responsible for particle
migration, see for instance Saffman [61], Ho and Leal [26], Vasseur
and Cox [71], Schonberg and Hinch [63], Hogg [28], Asmolov et al.
[2], and Matas et al. [43]. Particle migration has also been investi-

gated in a number of numerical simulation studies. Feng et al. [19]
employed a Finite Element Method (FEM) to study the migration of
a single circular cylinder in plane Poiseuille flow. Inamuro et al.
[31] investigated a similar problem using a Lattice Boltzmann
Method (LBM). Chun and Ladd employed LBM to investigate the
migration of spheres in a square duct at Re < 1000 [11]. They
showed that the stable lateral position of a single particle moves
closer to the duct wall as the Reynolds number increases. For flows
containing several particles, a first stable particle configuration
forms at Re < 300; a secondary stable region nearer to the center
of the duct is observed at Re > 700. Pan and Glowinski developed
the method of Distributed Lagrange Multiplier/Fictitious Domain
Method (DLM/FDM) in conjunction with a finite difference
approach to investigate the shear induced migration of a circular
cylinder [22] and a collection of spheres [57]. Shao et al. [66] inves-
tigated the motion of spheres in steady Poiseuille flow at moder-
ately high Re using DLM/FDM. Their work confirmed the
development of an inner stable annulus at high Re, i.e., Re P 640
for specific size and channel length ratio. Yu et al. [73] investigated
the sphere sedimentation as well as the migration of a sphere in
Poiseuille flow at Re < 400 via the DLM method. Hu [30] and Hu
et al. [29] employed the Arbitrary Lagrangian–Eulerian (ALE)
method on a body-fitted unstructured finite element grid to simu-
late fluid–solid systems. Their work influenced that of Patankar
et al. [59,58] and Choi and Josef [9] in their study of the lift-off of
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cylinders in plane Poiseuille flow. Similar techniques have been
considered to study the behavior of a non-spherical particle, usu-
ally an ellipsoid in fluid flow. Swaminathan et al. [69] used ALE
based FEM to simulate the sedimentation of an ellipsoid. Pan
et al. [54] investigated the motion of ellipsoid in Poiseuille flow
using DLM/FDM. In several other studies the investigation of flows
containing a collection of cylinders (2D) [8,20,67] and spheres (3D)
[11,29] was carried out via direct numerical simulation with the
LBM [11,20], Lagrange multiplier based fictitious domain method
[8,56,67], and ALE-based FEM [29].

All these numerical studies of particle suspension and migration
draw on an Eulerian–Lagrangian representation of the fluid–solid
system. In this contribution, we employ a Lagrangian–Lagrangian
(LL) approach to study the particle migration over a wide range
of Reynolds numbers. The Smoothed Particle Hydrodynamics
(SPH) method [21,41] is relied upon for the fluid flow simulation.
The SPH method is extensively reviewed in Monaghan [47] and
Liu and Liu [40]. Herein, the Navier–Stokes equations, solved
within the SPH framework, are coupled with Newton’s equations
of motion for rigid body dynamics to investigate, in a unitary
framework, flows that include rigid bodies of arbitrary geometries.
We used and validated the coupling algorithm reported in [60]. The
possible solid to solid contacts, if any, are resolved via a lubrication
force model [39].

The document is organized as follows: Section 2 provides an
overview of the numerical solution and its parallel implementa-
tion. Section 3 presents a set of validations of the proposed
approach in relation to experiments that involve particle migration
and distribution at 1 < Re < 1400. The distribution validation exhib-
its more complexity than capturing only the stable radial position
since attention must be paid to the rate of migration to the stable
configuration. In Section 4, we report results of several parametric
studies that investigate the effect of particle shape, size, distance,
and concentration on particle radial migration. A scaling analysis
carried out for a dense colloidal suspension of ellipsoids concludes
the numerical experiment section.

2. Fluid–solid interaction simulation methodology

The SPH-based approach used herein to represent the dynamics
of fluid flow accounts for the two-way coupling with rigid body
dynamics by regarding body geometries as moving boundaries.
The 3D rigid body rotation is characterized by means of a set of
four Euler parameters [25]. In terms of notation, the term ‘‘marker’’
is employed to denote the SPH discretization point and ‘‘particle’’
to refer to a 3D rigid body, although the latter has geometry and
experiences 3D rotation during its time evolution.

2.1. The Smoothed Particle Hydrodynamics method

An in-depth discussion of the SPH method and recent develop-
ments can be found in [40,44,47]. Herein, we highlight the essen-
tial components required to express the fluid–solid coupling.

SPH is a Lagrangian method that probes the fluid domain at
a set of moving markers. Each marker has an associated kernel
function with compact support that defines its domain of influ-
ence, as shown in Fig. 1. The choice of kernel function W is not
unique. A cubic spline interpolation kernel [48] was used in this
work. At a point located by a position vector r with respect to
an SPH marker, the cubic spline interpolation kernel is defined
as

Wðq;hÞ ¼ 1

4ph3 �
ð2� qÞ3 � 4ð1� qÞ3; 0 6 q < 1

ð2� qÞ3; 1 6 q < 2
0; q P 2

8><>: ; ð1Þ

where h is the kernel function’s characteristic length and q � rj j=h.
The radius of the support domain, jh, is proportional to the charac-
teristic length h through the parameter j which is equal to 2 in the
kernel function defined by Eq. (1). Although, a constant h was con-
sidered herein, using a variable h may be beneficial in some appli-
cations such as wave propagation in compressible flow [47].

The cubic spline kernel given in Eq. (1) is the most common
smoothing kernel in one, two, and three dimensions owing to its
reduced computational burden – a consequence of the small num-
ber of neighboring SPH markers typically required by the approach.
Other researchers suggested that a smoother second order deriva-
tive of the interpolation kernel can improve the SPH stability
[40,51,70]. In [50] it was shown that the dispersion relation for lin-
ear waves can be undesirable for cubic splines with j ¼ 2. How-
ever, depending on the application, the artifacts can be
negligible. Kernels that approximate the Gaussian function; i.e.,
higher order splines such as quartic (j ¼ 2:5) and quintic (j ¼ 3),
have been shown to produce better results at the expense of a
higher computational burden [51]. Similarly, Colagrossi and Land-
rini [12] tested third and fifth order B-splines as well as cut-nor-
malized Gaussian kernels (j ¼ 3), and recommended the latter.

Using the SPH framework, the continuity and momentum equa-
tions, given respectively by

dq
dt
¼ �qr � v; ð2Þ

and

dv
dt
¼ � 1

q
rpþ l

q
r2v þ f; ð3Þ

are discretized as [49]

dqa

dt
¼ qa

X
b

mb

qb
va � vbð Þ � raWab; ð4Þ

and

dva

dt
¼ �

X
b

mb
pa

q2
a
þ pb

q2
b

� �
raWab þPab

� �
þ fa: ð5Þ

In Eq. (5), indices a and b denote the SPH markers, as shown in
Fig. 1, and

Pab ¼ �
ðla þ lbÞxab � raWab

�q2
ab x2

ab þ e�h2
ab

� � vab ð6Þ

imposes the viscous force based on the discretization of the r2

operator. In terms of notation, q and l are the fluid density and vis-
cosity, respectively; v and p are flow velocity and pressure, respec-
tively; m is the mass associated with an SPH marker; f is the
volumetric force; t is the real time; xab is the relative distance

Fig. 1. Illustration of the kernel, W, and support domain, S – shown for marker a.
For 2D problems the support domain is a circle, while for 3D problems it is a sphere.
SPH markers are shown as black dots.
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