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a b s t r a c t

In present study, a hybrid finite element method is applied to investigate the free vibration of spherical
shell filled with fluid. The structural model is based on a combination of thin shell theory and the classical
finite element method. It is assumed that the fluid is incompressible and has no free-surface effect. Fluid
is considered as a velocity potential variable at each node of the shell element where its motion is
expressed in terms of nodal elastic displacement at the fluid–structure interface. Numerical simulation
is done and vibration frequencies for different filling ratios are obtained and compared with existing
experimental and theoretical results. The dynamic behavior for different shell geometries, filling ratios
and boundary conditions with different radius to thickness ratios is summarized. This proposed hybrid
finite element method can be used efficiently for analyzing the dynamic behavior of aerospace structures
at less computational cost than other commercial FEM software.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Shells of revolution, particularly spherical shells are one of the
primary structural elements in high speed aircraft. Their applica-
tions include the propellant tank or gas-deployed skirt of space
crafts. Space shuttles need a large thrust within a short time inter-
val; thus a large propellant tank is required. Dynamic behavior in
the lightweight, thin-walled tank is an important aspect in its
design. These liquid propelled space launch vehicles experience a
significant longitudinal disturbance during thrust build up and also
due to the effect of launch mechanism. Dynamic analysis of such a
problem in the presence of fluid–structure interaction is one of the
challenging subjects in aerospace engineering. Great care must be
taken during the design of spacecraft vehicles to prevent dynamic
instability.

Free vibration of spherical shell containing a fluid has been
investigated by numerous researchers experimentally and analyti-
cally. Rayleigh [1] solved the problem of axisymmetric vibrations
of a fluid in a rigid spherical shell. The solution for vibrations of
the fluid-filled spherical membrane appears in the work of Morse
and Feshbach [2].

The fluid movement on the surface of fluid (sloshing) in
non-deformable spherical shell has been investigated by few
researchers as Budiansky [3], Stofan and Armsted [4], Chu [5],
Karamanos et al. [6]. The oscillations of the fluid masses result
from the lateral displacement or angular rotation of the spherical
shell. Others researchers have studied particular cases like the case

of a sphere filled with fluid. Rand and Dimaggio [7] considered the
free vibrations for axisymmetric, extensional, non-torsional of
fluid-filled elastic spherical shells. Motivated by the fact that
human head can be represented as a spherical shell filled by fluid,
Engin and Liu [8] considered the free vibration of a thin homoge-
nous spherical shell containing an inviscid irrotational fluid.
Advani and Lee [9] investigated the vibration of the fluid-filled
shell using higher-order shell theory including transverse shear
and rotational inertia. Guarino and Elger [11] have looked at the
frequency spectra of a fluid-filled sphere, both with and without
a central solid sphere, in order to explore the use of auscultatory
percussion as a clinical diagnostic tool. Free vibration of a thin
spherical shell filled with a compressible fluid is investigated by
Bai and Wu [12]. The general non-axisymmetric free vibration of
a spherically isotropic elastic spherical shell filled with a compress-
ible fluid medium has been investigated by Chen and Ding [13].
Young [14] studied the free vibration of spheres composed of
inviscid compressible liquid cores surrounded by spherical layers
of linear elastic, homogeneous and isotropic materials.

The case of hemispherical shells filled with fluid was studied
experimentally by Samoilov and Pavlov [15]. Hwang [16] investi-
gated the case of the longitudinal sloshing of liquid in a flexible
hemispherical tank supported along the edge. Chung and Rush
[17] presented a rigorous and consistent formulation of dynami-
cally coupled problems dealing with motion of a surface-fluid-shell
system. A numerical example of a hemispherical bulkhead filled
with fluid is modeled.

Komatsu [18,19] used a hybrid method with a fluid mass
coefficient added to his system of equations. He also validated
his model with experiments on hemispherical shells partially filled

http://dx.doi.org/10.1016/j.compfluid.2014.11.023
0045-7930/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: aouni.lakis@polymtl.ca (A.A. Lakis).

Computers & Fluids 108 (2015) 67–78

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.11.023&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2014.11.023
mailto:aouni.lakis@polymtl.ca
http://dx.doi.org/10.1016/j.compfluid.2014.11.023
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


with fluid under two boundary conditions: a clamped boundary
condition and a free boundary condition. Recently, Ventsel et al.
[20] used a combined formulation of the boundary elements
method and finite elements method to study the free vibration of
an isotropic simply supported hemispherical shell with different
circumferential mode numbers.

For a spherical shell that is partially liquid-filled, if one wishes
to consider the hydroelastic vibration developed as consequence
of interaction between hydrodynamic pressure of liquid and elastic
deformation of the shell, this is a complex problem. Numerical
method such as the finite element method (FEM) are therefore
used since they are powerful tools that can adequately describe
the dynamic behavior of such system which contains complex
structures, boundary conditions, materials and loadings. Some
powerful commercial FEM software exists, such as ANSYS, ABAQUS
and NASTRAN. When using these tools to model such a complex FSI
problem, a large numbers of elements are required in order to get
good convergence. The hybrid approach presented in this study
provides very fast and precise convergence with less numerical
cost compared to these commercial software packages.

In this work a combined formulation of shell theory and the
hybrid finite element method (FEM) is applied to model the shell
structure. Nodal displacements are found from exact solution of
shell theory. This hybrid FEM has been applied to produce efficient
and robust models during analysis of both cylindrical and conical
shells. A spherical shell which has been filled partially with incom-
pressible and inviscid is modeled in this study. The fluid is charac-
terized as a velocity potential variable at each node of the shell
finite element mesh; then fluid and structures are coupled through
the linearized Bernoulli’s equation and impermeable boundary
condition at the fluid–structure interface. Dynamic analysis of
the structure under various geometries, boundary conditions and
filling ratios is analyzed.

2. Formulation

2.1. Structural modeling

In this study the structure is modeled using hybrid finite ele-
ment method which is a combination of spherical shell theory
and classical finite element method. In this hybrid finite element
method, the displacement functions are found from exact solution
of spherical shell theory rather approximated by polynomial func-
tions as is done in classical finite element method. In the spherical
coordinate system (R,h,/) shown in Fig. 1, five out of the six equa-
tions of equilibrium derived in reference for spherical shells are
written as follows:
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where N/, Nh, N/h are membrane stress resultants (forces per unit of
length of the middle surface); M/, Mh, M/h the bending stress
resultants(moments per unit of length of the middle surface) and
Q/, Qh the shear forces(forces per unit of length of the middle
surface) (Fig. 2). The sixth equation, which is an identity equation
for spherical shells, is not presented here.

Strains and displacements for three displacements in meridio-
nal U/, radial W and circumferential Uh are related as follows:
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The displacements U, W and V in the global Cartesian coordinate
system are related to displacements U/i, Wi and Uhi indicated in
Fig. 3. by:
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The membrane stress resultants and bending stress resultants
vector frg ¼ N/ Nh N/h M/ Mh M/hf gT is expressed as
function of strain {e} by

frg ¼ ½P�feg ð4Þ

where [P] is the elasticity matrix for an anisotropic shell given by:

½P� ¼

P11 P12 0 P14 P15 0
P21 P22 0 P24 P25 0
0 0 P33 0 0 P36

P41 P42 0 P44 P45 0
P51 P52 0 P54 P55 0
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666666664

3
777777775

ð5Þ

Upon substitution of Eqs. (2), (4) and (5) into Eq. (1), a system of equi-
librium equations can be obtained as a function of displacements:

L1ðU/;W;Uh; PijÞ ¼ 0
L2ðU/;W;Uh; PijÞ ¼ 0
L3ðU/;W;Uh; PijÞ ¼ 0

ð6Þ

These three linear partial differentials operators L1, L2 and L3 are
given in Appendix A, and Pij are elements of the elasticity matrix
which, for an isotropic thin shell with thickness h is given by:
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Fig. 1. Geometry of spherical shell.
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