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a b s t r a c t

In this work, we consider a combined momentum–mass source immersed boundary method that can be
used to easily simulate flows in domains with arbitrary wall topographies, taking advantage of existing
standard fast solvers for straight walls. This method is incorporated into a standard second-order finite-
volume code with a Fast Fourier Transform solver, previously used for direct numerical simulations of
flow in pipes with a straight wall, making it possible to study the influence of a large range of roughness
topographies on the flow. The method is validated for both laminar and turbulent flow over walls with
sinusoidal undulations. The implementation of the immersed boundary method preserves the second-
order accuracy of the original code, and first-order methods are presented to calculate the shear-stress
and the pressure-drag at the wall. Results for turbulent flow over walls represented by a single wave-
number, as well as by a superposition of many wave-numbers, show that the flow in the outer layer is
not affected by the nature of the wall topography, provided that the variation in the diameter is not
too large. Furthermore, it is found that the relative contributions of the pressure and the shear to the total
drag on the wall behave similarly to undulated channel flow, when considered as a function of an effec-
tive slope parameter.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade, immersed boundary methods (IBM) have
frequently been used to simulate flow over arbitrary geometries.
The method was originally developed by Peskin [1] to simulate
the flow around heart valves; a summary of more recent develop-
ments is given in e.g. the review paper by Mittal and Iaccarino [2].
Traditionally, body-conformal grids are used in flow simulations;
for simple geometries, e.g. pipes or channels, generating such grids
is straightforward; in more complex geometries, however, generat-
ing a suitable grid can be time-consuming. Furthermore, non-
structured grids, in general, do not allow the use of Fast Fourier
Transform (FFT) solvers for the Poisson equation, thereby signifi-
cantly increasing the computational resources required. Using an
IBM, there is no need for the generation of a body-conformal grid;
instead, a regular grid is used in a regular computational domain,
regardless of the actual geometry. The effects of the solid boundary
are incorporated by exerting a body force on the fluid inside (or

near) this boundary. This saves time, since it is not necessary to
generate a complex grid, and enables the use of fast solvers.

Two main types of IBM can be distinguished: the continuous-
forcing and the direct-forcing methods. In the continuous-forcing
method, the body force is modelled as a (damped) oscillator [3] or
a porous medium [4,5]. The coefficients (spring constant and effec-
tive viscosity) are continuously adjusted to fit the boundary condi-
tions. This method is often used in biological systems, where the
walls are elastic, as for example by Peskin [1]. When simulating
rigid boundaries, however, the large stiffness of the oscillator,
required to accurately model the solid boundary, can lead to
numerical instabilities [6]. To avoid this difficulty, Mohd-Yusof [7]
and Verzicco et al. [8] developed the direct-forcing method, where
the boundary conditions at the immersed boundary are directly
imposed. Examples of implementation of the direct-forcing method
are given by Tseng and Ferziger [9] and Bhaganagar and Hsu [10].
This method can be enhanced by including mass sources in the con-
tinuity equation, to improve mass conservation at the immersed
boundary, as proposed by Parnaudeau et al. [11,12] for finite-differ-
ence codes and by Kim et al. [13] for finite-volume codes.

In this work, the IBM with momentum and mass sources by
Kim et al. [13] was implemented into an existing second-order
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finite-volume code for direct numerical simulations (DNS) of flow
in pipes with straight walls, written by Eggels [14], which uses
an FFT solver for the Poisson equation. This IBM is a direct-forcing
method, and was developed for simulations with rigid stationary
boundaries. To illustrate the potential of the method, simulations
of flow in pipes with arbitrary roughness topographies are per-
formed in this paper. The method has also been used to simulate
moving boundaries [15–17]. This does require a change in the cal-
culation of the mass sources to account for the movement of the
boundary [16,17]. Furthermore, freshly-cleared-cells, which are
located inside the fluid, but were inside the boundary in the previ-
ous time-step have to be considered separately [2]. To our knowl-
edge, the method has never been applied to flexible boundaries;
although in principle it would be possible, the current method
would have to be adjusted further to model the elasticity.

In pipe flow, the pressure-gradient is balanced by the drag
exerted on the flow by the wall, and any arbitrary roughness
topography will change the pressure-gradient in the flow. The
influence of stochastic roughness on the pressure-gradient in tur-
bulent pipe flow has been extensively studied by Nikuradse [18],
who created roughness by gluing sand grains of varying size to
the wall of a pipe. The results of this research are summarized in
the Moody diagram, from which the friction factor of a pipe can
be determined from the Reynolds number of the flow and the rel-
ative roughness height. More regular, yet non-flat, topographies
also have an effect on the drag that the fluid exerts on the wall
and, in this sense, they can also be considered roughness. Research
has shown, however, that the effect of ‘roughness’ with such a reg-
ular topography on the pressure-gradient is not necessarily well
represented by the Moody diagram, e.g. because different rough-
ness elements can shelter each other [19].

Turbulent flows over regular roughness have been studied both
experimentally [19–23] and numerically; most of the numerical
studies use body-conformal grids in channel geometries [24–29].
Blackburn et al. [30] performed simulations with a wall with a sin-
gle sinusoidal undulation, for a turbulent pipe flow; their results
will be used in the validation of our implementation.

There are also some examples of earlier research where
immersed boundary methods were used for simulating flow over
regular roughness elements. All these studies consider a channel
geometry, and do not use mass sources in the continuity equation
to improve mass conservation near the wall. The sinusoidal topog-
raphies considered consist of a single sinusoidal undulation [9] or a
multiplication of two undulations [10,31]. Finally, Anderson [32]
considered the flow over many different surfaces (prisms, mounds,
sinusoids, ‘‘fractal-like’’ surfaces, as well as a synthetic city) using
an IBM in which the body force is based on effective drag coeffi-
cients of the roughness elements. Yuan and Piomelli [33] used a
method based on the volume-of-fluid approach [34] for Large-Eddy
Simulations (LES) of the flow over surfaces with sand grain rough-
ness and over homogeneous roughness with a parabolic autocorre-
lation function.

In this work, we perform DNS of turbulent flows in (i) pipes
with simple wall-topographies, consisting of a single sinusoidal
undulation, and (ii) pipes with complex wall-topographies, con-
sisting of a superposition of sinusoidal undulations, to mimic real
roughness. The wall-topographies are implemented using an IBM
that includes mass sources. The complex wall-topographies are
similar to those considered by Napoli et al. [27–29] for channel
flow, using body-conformal grids. Furthermore, we present a
method of calculating the shear and pressure-drag at the wall,
and compare the results of the calculations with those of Napoli
et al. [27].

The structure of the paper is as follows. In Section 2, the original
code for pipe flow with straight walls and the immersed boundary
method are discussed. Section 3 covers the methodology to

compute the pressure and shear-drag at the wall. In Section 4,
the method is validated for both laminar and turbulent flows,
and, subsequently, in Section 5, the order of the method is dis-
cussed. Results of simulations of simple and complex wall-topog-
raphies are presented and discussed in Section 6. Finally, in
Section 7, we make some concluding remarks.

2. Implementation of the immersed boundary method

The finite-volume DNS pipe-flow solver developed by Eggels
[14] uses a staggered grid for the three velocity components (the
radial velocity u, the circumferential velocity v and the axial veloc-
ity w) and the pressure. The fractional-step method is used to solve
the discrete Navier–Stokes equations. In this method, when
advancing the time-step, the new velocity field is approximated
in the predictor step by assuming a constant pressure-gradientrP:

~U� � ~Un

2Dt
þ Ah

~Un
� �

¼ � 1
q
rhP þ mDh

~Un
� �

þ fnþ1 ð1Þ

where ~U� represents the intermediate velocity field, which does not
necessarily satisfy mass conservation, Ah represents the numerical
discretization of the convection term, Dh represents the numerical
discretization of the diffusion term, rhP represents the numerical
discretization of the average pressure-gradient and fnþ1 denotes
the external body forces acting on the fluid. The intermediate veloc-
ity field is corrected, to satisfy mass conservation, by adjusting the
pressure:

~Unþ1 � ~U�
Dt

¼ � 1
q
rhP� ð2Þ

where the pressure correction P� is obtained by taking the diver-
gence of the mass conservation equation:

1
q
r2

hP� ¼ 1
Dt
rh � ~U� ð3Þ

This is called the corrector step. In Eq. (3), rh � ~U� represents the
numerical discretization of the divergence of ~U�.

In the immersed boundary method, the no-slip boundary condi-
tion on the immersed boundary is implemented by introducing
momentum sources in the predictor step and mass sources in the
corrector step. The momentum sources are basically body forces
that the wall exerts on the flow, and are located inside the
immersed boundary. They are calculated using interpolations with
velocities outside this boundary, inside the actual fluid. After
applying the body forces (fnþ1 in Eq. (1)), the intermediate velocity
field ~U� will satisfy the no-slip condition at the immersed bound-
ary. Section 2.1 summarizes the calculation of the body forces. To
better maintain the no-slip condition after the adjustment of the
velocity field in the corrector step, mass sources are introduced
in and near the immersed boundary. These mass sources are briefly
explained in Section 2.2. For the full explanation of both the
momentum and mass sources, see the work by Kim et al. [13].

2.1. Immersed boundary method in the predictor step

This section describes the calculation of the body forces in the
predictor step. The body forces change the velocity inside the wall
such that the velocity at the wall (calculated using an interpola-
tion) is equal to zero. Calculating the body force is, therefore,
equivalent to calculating the velocity field inside the wall. The
body forces are computed separately for the three velocity compo-
nents u;v and w on the staggered grid; for simplicity, only the
interpolation of a single velocity component, u, is considered here.
The interpolations described in this section, used to calculate these
body forces, are explained here for a 2D Cartesian geometry, but
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