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a b s t r a c t

Two-dimensional stagnation-point flow of Jeffrey fluid over an exponentially stretching sheet is studied.
Convective boundary condition is used for the analysis of thermal boundary layer. In addition the
combined effects of thermal radiation and magnetic field are taken into consideration. The developed
nonlinear problems have been solved for the series solution. The convergence of the series solutions is
carefully analyzed. The behaviors of various physical parameters such as viscoelastic parameter (b),
magnetic field parameter (M), radiation parameter (R), Biot number (Bi) and velocity ratio parameter
(a) are examined through graphical and numerical results of velocity and temperature distributions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of flow and heat transfer over continuously moving
extensible or inextensible surfaces have received great attention
in the past due to their various industrial and engineering applica-
tions. For example the production of sheeting material is involved
in manufacturing processes and includes both metal and polymer
sheets. Here the performance of heat transfer at the sheet has a piv-
otal role on the quality of final product. Industrial relevant applica-
tions include fibers spinning, hot rolling, manufacturing of plastic
and rubber sheets, continuous casting and glass blowing. Flow over
a flat plate with uniform free stream has been discussed by Blasius
[1]. Sakiadis [2] initially studied the boundary layer flow over a con-
tinuously moving flat plate in a quiescent ambient fluid. Crane [3]
discussed the flow over an extensible sheet which is stretched in
its own plane with the velocity proportional to the distance from
the origin. Perturbation solutions for flow of viscoelastic fluid
bounded by a stretching sheet have been obtained by Rajagopal
et al. [4]. Sankara and Watson [5] and Andersson et al. [6] have
extended the Crane’s problem for micropolar and power-law fluids
respectively. Mahapatra and Gupta [7] obtained analytic solution
for flow of second grade fluid over a stretching sheet by regular

perturbation method. Liu [8] derived the exact solutions for flow
with heat and mass transfer of viscous fluid with internal heat
generation and chemical reaction. Cortell [9] numerically examined
the characteristics of mass transfer in the two-dimensional flow of
viscoelastic fluid over a stretching sheet. Influences of viscous
dissipation and thermal radiation on the flow past a stretching
sheet has been investigated by Cortell [10]. Hayat et al. [11] ana-
lyzed the characteristics of heat and mass transfer in the flow of
second grade fluid over a stretching sheet. Melting heat transfer
in the stagnation-point flow over a stretching/shrinking sheet has
been addressed by Bachok et al. [12]. MHD stagnation-point flow
of power-law fluid over a stretching surface has been discussed
by Mahapatra et al. [13]. Heat transfer over an impermeable
stretching sheet with non-uniform heat source/sink has been inves-
tigated by Nandeppanavar et al. [14]. Recently various contribu-
tions dealing with the MHD boundary layer flow over stretching
surfaces have been reported (see Ellahi and Riaz [15], Hameed
and Ellahi [16,17], Ellahi [18], Zeeshan and Ellahi [19]). The above
mentioned studies were only confined to the flows over a linearly
stretching surface. However in industrial applications the sheet
may be stretched in a variety of ways. In this regard the flow anal-
ysis dealing with the exponentially stretching sheet is scarcely
addressed. Simultaneous effects of heat and mass transfer in the
boundary layer flow over an exponentially stretching sheet has
been reported by Magyari and Keller [20]. Suction and heat transfer
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characteristics in the exponentially stretched flow have been inves-
tigated by Elbashbeshy [21]. Viscoelastic effects in the flow over an
exponentially stretching sheet have been examined by Khan and
Sanjayanand [22]. Sajid and Hayat [23] provided homotopy solu-
tions for thermal radiation effect in the flow by an exponentially
stretching sheet. Nadeem et al. [24] explored the flow and heat
transfer of viscoelastic (second grade) fluid over an exponentially
sheet in the presence of thermal radiation.

Convective heat transfer with thermal radiation is involved in
various engineering processes including thermal energy storage,
gas turbines, nuclear turbines, die forging and chemical reactions.
Aziz [25] numerically investigated the viscous flow over a flat plate
with convective boundary conditions. Magyari [26] computed the
exact solution to this problem in a compact integral form. Radia-
tion effects in the Blasius and Sakiadis flows with convective
boundary conditions have been described by Cortell [27]. Ishak
[28] provided the numerical solution for flow and heat transfer
over a permeable stretching sheet with convective boundary con-
ditions. Yao et al. [29] obtained a closed form exact solution for vis-
cous flow over a permeable stretching/shrinking convectively
heated wall. Series solutions for flows of Jeffrey and second grade
fluids with convective boundary conditions have been computed
by Hayat et al. [30,31]. In another investigation Alsaedi et al. [32]
computed exact solutions for steady flow of Jeffrey fluid over a lin-
early stretching surface with convective boundary conditions.
Makinde and Aziz [33] considered the analysis of convective heat
transfer in the steady flow of nanofluid. Mustafa et al. [34] recently
explored the axisymmetric flow of nanofluid over a convectively
heated radially stretching sheet.

The present work is concerned with the development of
momentum and thermal boundary layers for the flow of viscoelas-
tic Jeffrey fluid over an exponentially stretching sheet. Heat trans-
fer analysis is performed in the presence of thermal radiation and
convective boundary conditions. The series expressions of velocity
and temperature functions are constructed by homotopy analysis
method (HAM) [35–40]. Plots for the influence of embedded flow
quantities on the velocity and temperature are displayed and dis-
cussed in detail.

2. Problem formulation

We consider the steady two-dimensional MHD stagnation point
flow of an incompressible Jeffrey fluid over an exponentially
stretching sheet. The magnetic field strength B0 is applied normal
to the plate. Induced magnetic field is assumed to be negligible
in comparison with applied magnetic field for small magnetic Rey-
nolds number. In addition, heat transfer analysis is considered
with radiation effects. Further we consider x-axis parallel to the
sheet and y-axis normal to it (see Fig. 1).

The velocity and temperature fields subject to boundary layer
approximations are governed by the following equations

@u
@x
þ @v
@y
¼ 0; ð1Þ

u
@u
@x
þ v @u

@y
¼ U0

dU0

dx
þ t

1þ k
@2u
@y2 þ k1

@u
@y

@2u
@x@yþ u @3u

@x@y2

� @u
@x

@2u
@y2 þ v @3u

@y3

0
@

1
A

2
4

3
5

� rB2
0

q
u� U0ð Þ;

ð2Þ

u
@T
@x
þ v @T

@y
¼ r @

2T
@y2 �

@qr

@y
; ð3Þ

u ¼ UwðxÞ ¼ ce
x
L; v ¼ 0; �k

@T
@y
¼ hðTf � TÞ at y ¼ 0 ð4Þ

u ¼ U0ðxÞ ¼ ae
x
L; T ¼ T1 as y!1; ð5Þ

where u and v represent the velocity components along x and y axes
respectively, U0 is the strain velocity, k is the ratio of relaxation to
retardation times, k1 is the retardation time, Uw is the stretching/
shrinking velocity, T is the fluid temperature, r is the thermal diffu-
sivity of the fluid, m ¼ ðl=qÞ is the kinematic viscosity, q is the den-
sity of fluid, k is the thermal conductivity of fluid, h is the convective
heat transfer coefficient and Tf is the convective fluid temperature
below the moving sheet.

We define the similarity transformations as
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where a and L are constants and prime denotes the differentia-
tion with respect to g; f is the dimensionless stream function, h
is the dimensionless temperature and w is the stream function
given by
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:

Now Eq. (1) is identically satisfied and (2)–(5) yield
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where b ¼ k1aex=L

L is a local dimensionless parameter, a ¼ c
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parameter with a > 1 for assisting flow and a < 1 for opposing flow
(i.e. when free stream velocity exceeds the stretching velocity),
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is the Biot number. The skin friction coefficient Cf

and local Nusselt number Nux are
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where the skin friction sw and the heat transfer from the plate qw

areFig. 1. Physical model and coordinate system.
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