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a b s t r a c t

In this paper, we study optimal feedback controls of a system governed by semilinear fractional evolution
equations via a compact semigroup in Banach spaces. By using the Cesari property, the Fillippove theorem
and extending the earlier work on fractional evolution equations, we prove the existence of feasible pairs.
An existence result of optimal control pairs for the Lagrange problem is presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Fractional differential equations have been proved to be one
of the most effective tools in the modeling of many phenomena
in various fields of physics, mechanics, chemistry, engineering,
etc. They have a great number of applications in nonlinear
oscillations of earthquakes, many physical phenomena such as
seepage flow in porous media and in the fluid dynamic traffic
model. For more details, see the monographs of Kilbas et al. [1],
Lakshmikantham et al. [2], Miller and Ross [3], Podlubny [4],
Tarasov [5], and the survey of Agarwal et al. [6,7]. Recently,
fractional differential equations and their optimal control have
been studied by many researchers including us (see, for instance,
[8–24] and the references therein).

On the other hand, there could be no manufacturing, no
vehicles, no computers and no regulated environment without
control systems. Control systems are most often based on the
principle of feedback, whereby the signal to be controlled is
compared to a desired reference signal and the discrepancy used
to compute corrective control action [25,26]. Optimal feedback
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control of semilinear evolution equations in Banach spaces has
been studied [27,28]; however, optimal feedback control of
fractional evolution equations in Banach spaces has not been
studied extensively.

Motivated by our previous work [19,20,23,24,28], we consider
optimal feedback control of a system governed by the following
semilinear fractional evolution equations:

CDq
t x(t) = Ax(t)+ f (t, x(t), u(t)),
t ∈ J = [0, T ], q ∈ (0, 1),

x(0) = x0,
(1)

where CDq
t is the Caputo fractional derivative of order q ∈ (0, 1),

and A : D(A) → X is the infinitesimal generator of a compact
C0-semigroup {T (t), t ≥ 0} in a reflexive Banach space X . The
control u takes its value from U[0, T ], which is a control set which
will be introduced in Section 3, and f : J × X × U → X will be
specified in the latter.

To achieve our purpose, we firstly give the existence of mild
solutions for the system (1). Secondly, we prove the existence
result of feasible pairs involving the compactness of operators
with the help of the Cesari property and the Fillippove theorem.
Then, we present the existence of optimal feedback controls for
the Lagrange problem (P). We remark that the system (1) is
more complex than the classical first order semilinear evolution
equation because a fractional derivative has appeared. After
overcoming some difficulty from the Caputo fractional derivative,
we extend the classical results on optimal feedback controls to the
case of semilinear fractional evolution equations.
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The rest of the paper is organized as follows. In Section 2, some
notations and preparation results are introduced. In Section 3, the
existence of mild solutions and feasible pairs for the system (1) are
presented. Finally, the existence of optimal feedback controls for
the Lagrange problem (P) is proved.

2. Preliminaries

Throughout this paper, we denote by X a reflexive Banach
space and by U a Polish space which is a separable completely
meritable topological space. Let C(J, X) be the Banach space of
continuous functions from J to X with the usual supremum norm.
For 1 < p < +∞, the Banach space Lp(J, X) consists of the
usual strongly measurable X-valued functions having p-th power
summable norms. Suppose that A : D(A) → X is the infinitesimal
generator of a compact C0-semigroup {T (t), t ≥ 0}. This means
that there existsM > 0 such that supt∈J ∥T (t)∥ ≤ M . By

Or(x) = {y ∈ X | ∥y − x∥ ≤ r}

we denote the ball centered at xwith the radius r > 0.

Definition 2.1 ([29]). Let E and F be two metric spaces. A
multifunction z : E → 2F is said to be pseudo-continuous at
t ∈ E if
ϵ>0

z(Oϵ(t)) = z(t).

We say thatz is pseudo-continuous on E if it is pseudo-continuous
at each point t ∈ E.

We recall some basic definitions and properties of the fractional
calculus theory which are used further in this paper. For more
details, see [1].

Definition 2.2. The fractional integral of order γ with the lower
limit zero for a function f is defined as

Iγ f (t) =
1

0(γ )

 t

0

f (s)
(t − s)1−γ

ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where0(·)
is the gamma function.

Definition 2.3. The Riemann–Liouville derivative of order γ with
the lower limit zero for a function f : [0,∞) → R can be written
as

LDγ f (t) =
1

0(n − γ )

dn

dtn

 t

0

f (s)
(t − s)γ+1−n

ds,

t > 0, n − 1 < γ < n.

Definition 2.4. The Caputo derivative of order γ for a function
f : [0,∞) → R can be written as

CDγ f (t) =
LDγ


f (t)−

n−1
k=0

tk

k!
f (k)(0)


, t > 0, n − 1 < γ < n.

Remark 2.5. (i) If f (t) ∈ Cn
[0,∞), then

CDγ f (t) =
1

0(n − γ )

 t

0

f (n)(s)
(t − s)γ+1−n

ds

= In−γ f (n)(t), t > 0, n − 1 < γ < n.

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X , then integrals

which appear in Definitions 2.2 and 2.3 are taken in Bochner’s
sense.

3. Existence of feasible pairs for fractional evolution equations

Wemake the following assumptions.

[S] : X is a reflexive Banach space and U is a Polish space.
[A] : A is the infinitesimal generator of a compact C0-semigroup

{T (t), t ≥ 0} on X .
[F1] : f : J × X × U → X is Borel measurable in (t, x, u) and is

continuous in (x, u).
[F2] : f satisfies local Lipschitz continuity with respect to x, i.e., for

any constant ρ > 0, there is a constant L(ρ) > 0 such that

∥f (t, x1, u)− f (t, x2, u)∥ ≤ L (ρ) ∥x1 − x2∥ ,

for every x1, x2 ∈ X, t ∈ J , and uniformly u ∈ U provided
with ∥x1∥, ∥x2∥ ≤ ρ.

[F3] : For arbitrary t ∈ J, x ∈ X and u ∈ U , there exists a positive
constantM > 0 such that

∥f (t, x, u)∥ ≤ M(1 + ∥x∥).

[F4] : For almost all t ∈ J , the set f (t, x,z(t, x)) satisfies the
following:
δ>0

cof (t,Oδ(x),z(Oδ(t, x))) = f (t, x,z(t, x)).

[U] : z : J × X → 2U is pseudo-continuous.

Let

U[0, T ] = {u : J → U | u(·) is measurable}.

Then, any element in the set U[0, T ] is called a control on J .
Based on our previous work, we introduce the following

definition of mild solutions for the system (1).

Definition 3.1 (Lemma 3.1 and Definition 3.1 [24]). A mild solution
x ∈ C(J, X) of the system (1) is defined as a solution of the
following integral equation:

x(t) = T (t)x0

+

 t

0
(t − θ)q−1S (t − θ) f


θ, x (θ) , u(θ)


dθ, t ∈ J, (2)

where

T (t) =


∞

0
ξq(θ)T (tqθ)dθ,

S (t) = q


∞

0
θξq(θ)T (tqθ)dθ,

ξq(θ) =
1
q
θ

−1− 1
qϖq


θ

−
1
q


≥ 0,

ϖq(θ) =
1
π

∞
n=1

(−1)n−1θ−qn−10(nq + 1)
n!

sin(nπq),

θ ∈ (0,∞),

ξq is a probability density function defined on (0,∞), that is

ξq(θ) ≥ 0, θ ∈ (0,∞) and


∞

0
ξq(θ)dθ = 1.

Any solution x(·) ∈ C(J, X) of the system (1) is referred to as a
state trajectory of the fractional evolution equation corresponding
to the initial state x0 and the control u(·).

The following lemma will be widely used in the following. For
the reader’s convenience, we state it here.

Lemma 3.2 (Lemmas 3.2–3.4, [24]). The operatorsT andS have the
following properties.
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