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a b s t r a c t

In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain
performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive
gain so as to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-
frequency oscillations which can adversely affect robustness. A new adaptive law, called optimal control
modification, is presented that can achieve robust adaptation with a large adaptive gain without
incurring high-frequency oscillations. The modification is based on a minimization of the L2 norm of
the tracking error bounded away from some lower bound, formulated as an optimal control problem. The
optimality condition is used to derive themodification based on the Pontryagin’s Minimum Principle. The
optimal control modification is shown to improve robustness of the standard MRACwithout significantly
compromising the tracking performance. Flight control simulations demonstrate the effectiveness of the
new adaptive law. A series of recent, successful flight tests of this adaptive law on a NASA F/A-18A aircraft
at NASA Dryden Flight Research Center further demonstrate the effectiveness of the optimal control
modification adaptive law.

Published by Elsevier B.V.

1. Introduction

Adaptive control is a potentially promising technology that can
improve a control system performance over a conventional fixed-
gain controller. In recent years, adaptive control has been receiving
a significant amount of attention. In aerospace applications,
adaptive control has been demonstrated in a number of flight
vehicles. For example, NASA conducted in the last decade a
flight test program of a neural net intelligent flight control
system on board a modified F-15 test aircraft [1]. The ability to
accommodate system uncertainties and to improve fault tolerance
of a control system is amajor selling point of adaptive control since
conventional gain-scheduled or fixed-gain control methods are
viewed as being less capable of handling off-nominal conditions
caused by faults and or failures. Nonetheless, these conventional
control methods tend to be robust to disturbances and unmodeled
dynamics when operated as intended.

In spite of the advances made in the field of adaptive control,
there exist several challenges related to the implementation of
adaptive control technology in safety-critical systems. Verification
and validation of adaptive control remains a major hurdle to
overcome [2]. This hurdle can be traced to the lack of performance
and stability metrics for adaptive control which poses a major
design challenge for adaptive control. Stability robustness of
adaptive control is also a major overriding concern. The fact that
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adaptive control is nonlinear certainly makes it inherently much
more difficult to ascertain stability robustness.

Even as adaptive control has been used with limited success in
some applications, the possibility of high-gain control due to fast
adaptation can be an issue. In certain applications, fast adaptation
is needed in order to improve the tracking performance rapidly
when a system is degraded significantly due to a plant damage
or failure that causes large changes in system dynamics. In these
situations, a large adaptive gain can be used to reduce the tracking
error rapidly. However, there typically exists a balance between
stability and adaptation. Fast adaptation leads to an improved
tracking performance, but by the same token can also result in
poor robustness that could adversely affect stability of a control
system [3]. Some recent adaptive control methods have addressed
fast adaptation and high-gain control, such as the L1 adaptive
control [4] and the hybrid direct–indirect adaptive control [5], as
well as other techniques. In the L1 approach, the implementation
of a low-pass filter on the adaptive control signal effectively
suppresses any high frequency oscillations that may occur due to
fast adaptation. In the limit, the L1 method provides a time delay
margin bounded away from zero. In the hybrid approach, direct
and indirect adaptive control are blended togetherwithin the same
control architecture. The indirect adaptive law uses a recursive
least-squaresmethod to adjust parameters of a controller to reduce
the modeling error, and the direct adaptive law then handles any
residual tracking error using a smaller adaptive gain.

To increase stability robustness of MRAC due to fast adaptation,
robust modification adaptive laws can also be used. Two well-
known robust modification adaptive laws that have been used
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extensively in adaptive control are the σ modification [6] and
ε modification [7]. Robust modification effectively introduces a
dampingmechanism into an adaptive law so as to prevent adaptive
parameter bursting phenomena due to lack of robustness [3]. This
paper introduces a new adaptive law based on an optimal control
formulation that minimizes the L2 norm of the tracking error
bounded away from some lower bound [8]. The new adaptive
law, referred to as optimal control modification, can enable
fast adaptation without loss of robustness. The analysis shows
that the optimal control modification adaptive law can improve
stability robustness of adaptive control to unmodeled dynamics.
Simulations and flight testing have been conducted with this new
adaptive law. The results support the effectiveness of the optimal
control modification adaptive law.

2. Optimal control modification

Given a nonlinear plant as

ẋ (t) = Ax (t) + B [u (t) + f (x (t))] (1)

where x (t) : [0, ∞) → Rn is a state vector, u (t) : [0, ∞) → Rp

is a control vector, A ∈ Rn×n and B ∈ Rn×p are known such that
the pair (A, B) is controllable, and f (x (t)) :Rn

→ Rp is a matched
uncertainty.

Assumption. The uncertainty f (x (t)) can be linearly parametr-
ized as

f (x (t)) =

m
i=1

θ∗

i φi (x (t)) + ε (x (t))

= Θ∗⊤Φ (x (t)) + ε (x (t)) (2)

where Θ∗
∈ Rm×p is an unknown constant ideal weight matrix

that represents a parametric uncertainty, Φ (x (t)) :Rn
→ Rm is

a vector of known bounded basis functions or regressors that are
continuous and differentiable in x, and ε (x (t)) :Rn

→ Rp is an
approximation error.

The set of basis functions Φ (x (t)) is chosen such that the
approximation error ε (x (t)) is small on a compact domain
x (t) ∈ Rn. There are several function approximation methods
that can be used for selecting suitable basis functions. For
example, the universal approximation theorem for sigmoidal
neural networks by Cybenko can be used for selecting sigmoidal
basis functions Φ (x (t)) [9]. Similarly, the Micchelli’s theorem
provides a theoretical basis for a neural net design using radial
basis functions to keep the approximation error ε (x (t)) small
[10]. Other function approximation methods such as Chebyshev
orthogonal polynomials have also been used [11].

The feedback controller u (t) is specified by

u (t) = −Kxx (t) + Kr r (t) − uad (t) (3)

where r (t) : [0, ∞) → Rp
∈ L∞ is a command vector, Kx ∈ Rp×n

is a stable gain matrix such that A − BKx is Hurwitz, Kr ∈ Rp×p is
a gain matrix for r (t), and uad (t) ∈ Rp is a direct adaptive signal
which estimates the parametric uncertainty in the plant such that

uad (t) = Θ⊤ (t) Φ (x (t)) (4)

where Θ (t) ∈ Rm×p is an estimate of the parametric uncer-
tainty Θ∗.

Then, the reference model is specified as

ẋm (t) = Amxm (t) + Bmr (t) (5)

where Am ∈ Rn×n and Bm ∈ Rn×p are given by

Am = A − BKx (6)
Bm = BKr . (7)

Let Θ̃ (t) = Θ (t)−Θ∗ be an estimation error of the parametric
uncertainty and define the tracking error as e (t) = xm (t) − x (t),
then the tracking error equation becomes

ė (t) = Ame (t) + B

Θ̃⊤ (t) Φ (x (t)) − ε (x (t))


. (8)

Proposition. The following optimal control modification adaptive
law

Θ̇ (t) = −Γ Φ (x (t))

e⊤ (t) P − νΦ⊤ (x (t)) Θ (t) B⊤PA−1

m


B (9)

provides an update law that minimizes ∥e (t)∥L2 associated with an
infinite-time horizon cost function

J = lim
t→∞

1
2

 tf

0
[e (t) − ∆ (t)]⊤ Q [e (t) − ∆ (t)] dt (10)

subject to Eq. (8), where ∆ represents the unknown lower bound of
the tracking error, Q = Q⊤ > 0 ∈ Rn×n is a weighting matrix,
Γ = Γ ⊤ > 0 ∈ Rm×m is an adaptive gain matrix, ν > 0 ∈ R is a
modification parameter, and P = P⊤ > 0 ∈ Rn×n solves

PAm + A⊤

mP = −Q . (11)

Proof. The cost function J is convex and represents the distance
measured from a point on the trajectory of e (t) to the normal
surface of a hypersphere B∆ = {e (t) ∈ Rn: ∥e (t)∥ ≤ ∥∆ (t)∥} ⊂

D ⊂ Rn. The cost function is designed to provide stability
robustness by not seeking an asymptotic tracking error that tends
to zero as tf → ∞, but rather one that tends to some lower bound
away from the origin. By not requiring an asymptotic tracking
error, the adaptation can be made more robust. Therefore, the
tracking performance can be traded with stability robustness by
a suitable selection of the modification parameter ν. Increasing
the tracking performance by reducing ν will decrease stability
robustness of the adaptive law to unmodeled dynamics and vice
versa. �

This optimal control problem can be formulated by the Pontrya-
gin’s Minimum Principle. Defining a Hamiltonian

H

e (t) , Θ̃ (t)


=

1
2
[e (t) − ∆ (t)]⊤ Q [e (t) − ∆ (t)]

+ p⊤ (t)

Ame (t) + BΘ̃⊤ (t) Φ (x (t)) − Bε (x (t))


(12)

where p (t) : [0, ∞) → Rn is an adjoint variable, then the neces-
sary condition gives

ṗ (t) = −∇H⊤

e = −Q [e (t) − ∆ (t)] − A⊤

mp (t) (13)

with the transversality condition p

tf → ∞


= 0 since e (0) is

known. Treating Θ̃⊤ (t) Φ (x) as a control variable, then the opti-
mality condition is obtained by

∇HΘ̃⊤Φ = p⊤ (t) B. (14)

The adaptive law can then be formulated by a gradient update
law as

˙̃
Θ (t) = −Γ ∇HΘ̃⊤ = −Γ Φ (x (t)) ∇HΘ̃⊤Φ

= −Γ Φ (x (t)) p⊤ (t) B. (15)

An ‘‘approximate’’ solution of p (t) can be obtained using
a ‘‘sweep’’ method [12] by letting p (t) = W (t) e (t) +

R (t) Θ⊤ (t) Φ (x (t)) where W (t) : [0, ∞) → Rn×n and R (t) :
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