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a b s t r a c t

Objective: We present a comparison between hybridized and non-hybridized discontinuous Galerkin
methods in the context of target-based hp-adaptation for compressible flow problems. The aim is to
provide a critical assessment of the computational efficiency of hybridized DG methods.

Method: Hybridization of finite element discretizations has the main advantage, that the resulting set of
algebraic equations has globally coupled degrees of freedom only on the skeleton of the computational
mesh. Consequently, solving for these degrees of freedom involves the solution of a potentially much
smaller system. This not only reduces storage requirements, but also allows for a faster solution with
iterative solvers. Using a discrete-adjoint approach, sensitivities with respect to output functionals are
computed to drive the adaptation. From the error distribution given by the adjoint-based error estimator,
h- or p-refinement is chosen based on the smoothness of the solution which can be quantified by prop-
erly-chosen smoothness indicators.

Results: Numerical results are shown for subsonic, transonic, and supersonic flow around the
NACA0012 airfoil. hp-adaptation proves to be superior to pure h-adaptation if discontinuous or
singular flow features are involved. In all cases, a higher polynomial degree turns out to be beneficial.
We show that for polynomial degree of approximation p = 2 and higher, and for a broad range of test
cases, HDG performs better than DG in terms of runtime and memory requirements.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During the last years, discontinuous Galerkin (DG) methods
(see, e.g., [1–3]) have become increasingly popular. This is
indisputable due to their advantages—high-order accuracy on
unstructured meshes, a variational setting, and local conservation,
just to name a few.

However, the use of discontinuous function spaces is at the same
time the reason for a major disadvantage: unlike in continuous
Galerkin (CG) methods, degrees of freedom are not shared between
elements. As a consequence, the number of unknowns is substan-
tially higher compared to a CG discretization. Especially for implicit
time discretization this imposes large memory requirements, and
potentially leads to increased time-to-solution.

In order to avoid these disadvantages, a technique called
hybridization may be utilized (see [4–10]), resulting in hybridized

discontinuous Galerkin (HDG) methods. Here, the globally coupled
unknowns have support on the mesh skeleton, i.e. the element
interfaces, only. This reduces the size of the global system and
coincidentally improves the sparsity pattern.

However, aiming at industry applications, e.g. turbulent flow
around a complete airplane or within an aircraft engine, hybridiza-
tion alone does most likely not provide a sufficiently successful
overall algorithm. In these applications one is usually interested
in certain quantities only, for example lift or drag coefficients in
aerospace, instead of the solution quality per se. Thus, it might
be beneficial to distribute the degrees of freedom within the com-
putational domain in such a way that the solution to the discret-
ized problem is close to optimal with respect to the accuracy of
these quantities. To achieve this goal, target-based error control
methods have been developed (see [11–15]). One such method is
based on the adjoint solution of the original governing equations
with respect to the target functional. In this method, an additional
linear system of partial differential equations is solved which then
gives an estimate on the spatial error distribution contributing to
the error in the target functional. This estimate can be used as a
criterion for local adaptation. Within the context of low order
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schemes, mesh refinement is used for adaptation [12,13]. Using DG
(or HDG), however, offers the additional possibility of varying the
polynomial degree within each element. For smooth solutions, this
is more efficient compared to mesh refinement, as it yields expo-
nential convergence. In the context of wave problems, Giorgiani
et al. [16] showed the benefit of using p-adaptation within an
HDG-framework. Combining both mesh- and order-refinement
results in so-called hp-adaptation.

In [17], we presented a discretization method for nonlinear con-
vection–diffusion equations. The method is based on a discontinu-
ous Galerkin discretization for convection terms, and a mixed
method using H(div) spaces for the diffusive terms. Furthermore,
hybridization is used to reduce the number of globally coupled
degrees of freedom. Adjoint consistency was shown in [18]. In
[19,20], we extended our computational framework to include
HDG schemes, as well as adjoint-based h- and hp-adaptation. In
the current paper, we compare our HDG method with a standard
DG method in the context of hp-adaptation for stationary com-
pressible flow, mainly with the aim to assess the efficiency of both
methods.

This paper is structured as follows. We briefly cover the govern-
ing equations, namely the compressible Euler and Navier–Stokes
equations, in Section 2. After that we introduce our discretization
and describe the concept of hybridization in Section 3. In Section 4
we establish the adjoint formulation and show how hybridization
can be applied to the dual problem. Then we show its efficiency
and robustness with examples from compressible flow, including
the subsonic, transonic, and supersonic regime, in Section 5. Finally,
we offer conclusions and outlook on future work in Section 6.

2. Governing equations

We consider systems of partial differential equations

$ � fcðwÞ � fvðw;$wÞð Þ ¼ s w;$wð Þ ð1Þ

with convective and diffusive fluxes

fc : Rm ! Rm�d and fv : Rm � Rm�d ! Rm�d; ð2Þ

respectively, and a state-dependent source term

s : Rm � Rm�d ! Rm ð3Þ

on domain X � Rd. Potentially, some of these quantities could be
zero. We denote the spatial dimension by d and the number of con-
servative variables by m. Boundary conditions can be applied either
to the conservative variables w 2 Rm and their gradient $w 2 Rm�d

or directly to the fluxes fc and fv .

2.1. Two-dimensional Euler equations

The Euler equations are comprised of the inviscid compressible
continuity, momentum and energy equations. They are given in
conservative form as

$ � fcðwÞ ¼ 0 ð4Þ

with the vector of conserved variables

w ¼ ðq;qv; EÞT ð5Þ

where q is the density, v is the velocity vector v :¼ ðvx;vyÞT , and E
the total energy. The convective flux is given by

fc ¼ qv; pIdþ v � v;vðEþ pÞð ÞT : ð6Þ
Pressure is related to the conservative flow variables w by the

equation of state

p ¼ ðc� 1Þ E� 1
2
qv � v

� �
ð7Þ

where c ¼ cp=cv is the ratio of specific heats, generally taken as 1:4
for air.

Along wall boundaries we apply the slip boundary condition

vnðwÞ :¼ v � n ¼ 0: ð8Þ

We also define a boundary function which satisfies vnðw@XðwÞÞ ¼ 0
as

w@XðwÞ ¼

1 0T 0

0 Id� n� n 0

0 0T 1

0BBB@
1CCCAw: ð9Þ

Prescribing boundary conditions at the far-field can be realized
with the aid of characteristic upwinding [21]. Here, the normal
convective flux Jacobian is decomposed as

f 0cðwÞ � n ¼ Qðw;nÞ �Kðw;nÞ � Q�1ðw;nÞ ð10Þ

with Kðw;nÞ being a diagonal matrix containing the eigenvalues of
f 0cðwÞ � n. The corresponding right eigenvectors can be found in the
columns of Qðw;nÞ. The interior and far-field states in characteristic
variables are then given by wc ¼ Qðw;nÞw and wc;1 ¼ Qðw;nÞw1,
respectively. Finally, depending on the sign of Kðw;nÞð Þi;i, we can
construct a boundary state

w@XðwÞð Þi ¼
Qðw;nÞwcð Þi; Kðw;nÞð Þi;i P 0
Qðw;nÞwc;1ð Þi; Kðw;nÞð Þi;i < 0:

(
ð11Þ

2.2. Two-dimensional Navier–Stokes equations

The Navier–Stokes equations in conservative form are given by

$ � fcðwÞ � fvðw;$wÞð Þ ¼ 0: ð12Þ

The convective part fc of the Navier–Stokes equations coincides
with the Euler equations. The viscous flux is given by

fv ¼ 0; s; sv þ k$Tð ÞT : ð13Þ

The temperature is defined via the ideal gas law

T ¼ lc
k � Pr

E
q
� 1

2
v � v

� �
¼ 1
ðc� 1Þcv

p
q

ð14Þ

where Pr ¼ lcp

k is the Prandtl number, which for air at moderate con-
ditions can be taken as a constant with a value of Pr � 0:72. k
denotes the thermal conductivity coefficient. For a Newtonian fluid,
the stress tensor is defined as

s ¼ l $v þ $vð ÞT � 2
3

$ � vð ÞId
� �

: ð15Þ

The variation of the molecular viscosity l as a function of tem-
perature is determined by Sutherland’s law as

l ¼ C1T3=2

T þ C2
ð16Þ

with C1 ¼ 1:458e� 6 kg
ms
ffiffiffi
K
p and C2 ¼ 110:4 K.

Along wall boundaries, we apply the no-slip boundary condi-
tion, i.e.

v ¼ 0 ð17Þ

with corresponding boundary function

w@XðwÞ ¼ q;0; Eð ÞT : ð18Þ

Furthermore, one has to give boundary conditions for the tempera-
ture. In the present work we use the adiabatic wall condition, i.e.

$T � n ¼ 0: ð19Þ
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