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a b s t r a c t

The Discontinuous Petrov–Galerkin (DPG) method is a class of novel higher order adaptive finite element
methods derived from the minimization of the residual of the variational problem (Demkowicz and
Gopalakrishnan, 2011) [1], and has been shown to deliver a method for convection–diffusion that is prov-
ably robust in the diffusion parameter (Demkowicz and Heuer, in press; Chan et al., in press) [2,3]. In this
work, the DPG method is extrapolated to nonlinear systems, and applied to several problems in fluid
dynamics whose solutions exhibit boundary layers or singularities in stresses. In particular, the effective-
ness of DPG as a numerical method for compressible flow is assessed with the application of DPG to two
model problems over a range of Mach numbers and laminar Reynolds numbers using automatic adaptiv-
ity with higher order finite elements, beginning with highly under-resolved coarse initial meshes.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Standard numerical methods tend to perform poorly across the
board for the class of PDEs known as singular perturbation prob-
lems; these problems are often characterized by a parameter that
may be either very small or very large. An additional complication
of singular perturbation problems is that very often, in the limiting
case of the parameter blowing up or decreasing to zero, the PDE it-
self will change types (e.g. from elliptic to hyperbolic). A canonical
example of a singularly perturbed problem is the convection–diffu-
sion equation in domain X � R3,

r � buð Þ � �Du ¼ f :

The equation models the steady-state distribution of the scalar
quantity u, representing the concentration of a quantity in a given
medium, taking into account both convective and diffusive effects.
Vector b 2 R3 specifies the direction and magnitude of convection,
while the singular perturbation parameter � represents the diffusiv-
ity of the medium. In the limit of an inviscid medium as �! 0, the
equation changes types, from elliptic to hyperbolic, and from
second order to first order.

The standard finite element method applied to the convection-
dominated diffusion problem can perform very poorly for the case

of small �. 1 This poor performance can be observed numerically – as
the singular perturbation parameter � decreases, the finite element
solution can diverge significantly from the best finite element
approximation of the solution. For example, it is well known that,
on a fixed coarse mesh and for small values of � (or a large Peclet
number, the ratio h=�), the Galerkin approximation of the solution
to the convection–diffusion equation with a boundary layer develops
spurious oscillations everywhere in the domain, even where the best
approximation error is small. These oscillations grow in magnitude
as �! 0, eventually polluting the entire solution.2

Traditionally, instability/loss of robustness in finite element
methods has been dealt with using residual-based stabilization
techniques. Given some variational form, the problem is modified
by adding to the bilinear form the strong form of the residual,
weighted by a test function and scaled by a stabilization constant
s. The most well-known example of this technique is the stream-
line-upwind Petrov–Galerkin (SUPG) method, which is a stabilized
FE method for solving the convection–diffusion equation using
piecewise linear continuous finite elements [5]. SUPG stabilization
not only removes the spurious oscillations from the finite element
solution of the convection–diffusion equation, but delivers the best
finite element approximation in the H1 norm in 1D.
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1 This is especially true in the presence of boundary layers in the solution [4].
2 For nonlinear shock problems, the solution often exhibits sharp gradients or

discontinuities, around which the solution would develop spurious Gibbs-type
oscillations. These are a result of underresolution of the solution, and are separate
from the oscillations resulting from a lack of robustness.
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From the perspective of the compressible Navier–Stokes equa-
tions, this loss of robustness is doubly problematic. Not only will
any nonlinear solution suffer from similar unstable oscillations,
but nonlinear solvers themselves may fail to yield a solution due
to such instabilities. A nonlinear solution is almost always com-
puted by solving a series of linear problems whose solutions will
converge to the nonlinear solution under appropriate assumptions,
and the presence of such oscillations in each linear problem can
cause the solution convergence to slow significantly or even di-
verge. Artificial viscosity and shock capturing methods have been
used to suppress such oscillations and regularize the problem.
While these methods will usually yield smooth and qualitatively
resolved solutions, these methods are often overly diffusive, yield-
ing results which are poor approximations of the true solution [6],
though modern artificial viscosity and shock capturing schemes
have improved greatly in recent years [7,8]. We have taken an
alternative approach in this work, avoiding artificial diffusion and
shock capturing for the moment.

Our aim is to develop a stable, higher order scheme for the
steady compressible laminar Navier–Stokes equations in tran-
sonic/supersonic regimes that is automatically adaptive beginning
with very coarse meshes. This requires that both the method and
the refinement scheme to perform adequately on coarse meshes
with high Peclet numbers – in other words, that the adaptive
method is robust in the diffusion parameter. We construct such
a method in this paper as follows: we begin by deriving the
DPG method for linear problems, then constructing a DPG method
for the scalar convection–diffusion equation that is robust for
very small viscosities. Unlike common adaptive methods in com-
putational fluid dynamics, which often refine based on physical
features (such as high gradients in the solution), adaptivity under
this method is driven by the minimization of a residual, which
measures error accurately even for highly underresolved meshes.
The DPG method for scalar convection–diffusion is then extrapo-
lated to systems of nonlinear equations, and applied to the
compressible Navier–Stokes equations. Numerical experiments
are given, demonstrating the robustness of the method and the
effectiveness of automatic adaptivity for two model problems in
viscous compressible flow.

2. DPG as a minimum-residual method

Our starting point is the minimization of some measure of error
over a finite-dimensional space, given an abstract variational
formulation

Given l 2 V�; find u 2 U such that
bðu;vÞ ¼ lðvÞ; 8v 2 V ;

�
ð1Þ

where b �; �ð Þ : U � V ! R is a continuous bilinear form. Throughout
the paper, we assume that the trial space U and test space V are real
Hilbert spaces, and denote U� and V� as the respective topological
dual spaces. Throughout the paper, we suppose the variational
problem (1) to be well-posed in the inf-sup sense. We can then
identify a unique operator B : U ! V� such that

hBu;viV��V :¼ bðu;vÞ; u 2 U; v 2 V

with �; �h iV��V denoting the duality pairing between V� and V, to
obtain the operator form of the our variational problem

Bu ¼ l in V�: ð2Þ

We are interested in minimizing the residual over the discrete
approximating subspace Uh � U

uh ¼ arg min
uh2Uh

JðuhÞ :¼ 1
2
kl� Buhk2

V� :¼ 1
2

sup
v2Vnf0g

jlðvÞ � bðuh;vÞj2

vk k2
V

:

For convenience in writing, we will abuse the notation supv2V to
denote supv2Vnf0g for the remainder of the paper. If we define the
problem-dependent energy norm

uk kE :¼ Buk kV� ;

then we can equate the minimization of JðuhÞwith the minimization
of error in �k kE.

The first order optimality condition for minimization of the
quadratic functional JðuhÞ requires the Gâteaux derivative to be
zero in all directions du 2 Uh,

l� Buh;Bduð ÞV� ¼ 0; 8du 2 U; ð3Þ

which is nothing more than the least-squares condition enforcing
orthogonality of error with respect to the inner product on V.

The difficulty in working with the first-order optimality
condition (3) is that the inner product �; �ð ÞV� cannot be evaluated
explicitly. However, we have that

l� Buh;Bduð ÞV� ¼ R�1
V ðl� BuhÞ;R�1

V Bdu
� �

V
; ð4Þ

where RV : V ! V� is the Riesz map mapping elements of a Hilbert
space V to elements of the dual V� defined by

RVv ; dvh iV��V :¼ v ; dvð ÞV :

Furthermore, the Riesz operator is an isometry, such that

JðuhÞ ¼ 1
2 l� Buhk k2

V� ¼ 1
2 R�1

V ðl� BuhÞ
��� ���2

V
. Thus, satisfaction of (4) is

exactly equivalent to satisfaction of the original optimality condi-
tions (3).

2.1. Optimal test functions

We define, for a given trial function du 2 U, the corresponding
optimal test function vdu

vdu :¼ R�1
V Bdu in V : ð5Þ

By definition of the Riesz inverse, the optimality condition (4)
becomes

hBuh � l;vduiV ¼ 0; 8du 2 U

which is exactly the standard variational equation in (1) with vdu as
the test functions. By defining the optimal test space
Vopt :¼ fvdu s:t: du 2 Ug, the solution of the discrete variational
problem (1) with test space Vh ¼ Vopt minimizes the residual in
the dual norm Buh � lk kV� .

The inversion of the Riesz operator required to determine opti-
mal test functions is done through the solution of the auxiliary var-
iational problem

vdu; dvð ÞV ¼ bðdu; dvÞ; 8dv 2 V : ð6Þ

In general, for conforming finite element methods, test functions
are continuous over the entire domain, and hence solving varia-
tional problem (6) for each optimal test function is a global opera-
tion over the entire mesh, rendering the method impractical. The
development of discontinuous Galerkin (DG) methods allows us
to avoid this by adopting basis functions which are discontinuous
over elements. In particular, the use of discontinuous test functions

dv and a localizable norm vk k2
VðXhÞ ¼

P
K2Xh

vk k2
VðKÞ, (where vk kVðKÞ is

a norm over the element K), reduces the problem of determining
global optimal test functions in (6) to local problems that can be
solved in an element-by-element fashion.

We note that solving (6) on each element exactly is still impos-
sible since it amounts to inverting the infinite-dimensional Riesz
map RV . Instead, optimal test functions are approximated using
the standard Bubnov–Galerkin method on an ‘‘enriched’’ subspaceeV � V such that dimðeV Þ > dimðUhÞ elementwise [9,1]. We assume
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