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a b s t r a c t

A class of hybrid finite difference–finite volume (FD–FV) operators is recently developed as building
blocks to solve one dimensional hyperbolic conservation laws when the solutions are smooth. This
method differs from conventional finite difference (FD) or finite volume (FV) schemes in that both nodal
values and cell-averaged values are considered as dependent variables and they are evolved in time.
Under this framework, the 1D FD–FV methods: (1) are numerically conservative for cell averages; (2)
have straightforward extension to high-order accuracy; and (3) have superior spatial accuracy property
compared to most conventional FD or FV methods.

This work extends the FD–FV approach in two aspects. The first extension is a WENO-type stabilization
to enhance the nonlinear stability of sample high-order 1D FD–FV operators. In particular, numerical
results show that when the solutions are smooth, the optimal order of accuracy (fifth-order) is achieved
by the stabilized fourth-order FD–FV method; and it is also capable to handle problems with strongly dis-
continuous solutions.

The second part of the paper extends a second-order FD–FV method to two-dimensional smooth prob-
lems. Both Cartesian grids and unstructured (triangular) grids are considered. In multiple dimensions,
there are different choices of the collocation points of the nodal values, and they lead to different FD–
FV schemes. This work develops a node-centered FD–FV scheme and an edge-centered FD–FV scheme
on each type of grids, and their numerical performance are assessed and compared by solving benchmark
flow problems with smooth solutions. In particular, the numerical examples confirm that the superior
spatial accuracy property of the 1D FD–FV operators carries to two space dimensions on Cartesian grids.
The present work focuses on two space dimensions, but the methodology extends naturally to three-
dimensional Cartesian grids and tetrahedral grids.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The hybrid finite difference–finite volume (FD–FV) operator is
recently proposed [1] to solve general one-dimensional (1D)
hyperbolic conservation laws when the solutions are smooth. It
uses both cell averages and nodal values as dependent variables
and use method of lines to evolve these variables in time. In partic-
ular, the semi-discretization formula for the cell-averaged vari-
ables is obtained directly from the weak form of the governing
equation, which leads to inherent conservation for these variables.
Hermite interpolation polynomials are used to construct the semi-
discretization formula for the nodal values, thus extension to arbi-
trary high-order accuracy is straightforward.

Numerical schemes for hyperbolic problems of this type date
back to the 1970s, and van Leer [2] constructed a third-order accu-
rate method (Scheme V of the reference) using both cell averages
and nodal values at cell faces for 1D conservation laws. This work,
however, is not further explored. Other similar works in literature
are the multi-moment methods [3,4], the staggered mesh or dual
mesh approaches [5,6], the space–time control element and solu-
tion element methods (CE/SE) [7–9], the PNPM methods [10,11],
and more recently the active flux schemes [12]. The major differ-
ence between the FD–FV approach and these methods is in the fol-
lowing aspects: (1) it has very simple and very general
formulation, and does not require any Riemann solvers and (2) it
uses method of lines for integration in time, and can be constructed
to high-order accuracy in both space and in time.

Another important feature that distinguishes the FD–FV ap-
proach from other numerical methods is its superior accuracy
property for smooth problems. In particular, it is theoretically
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shown in previous work [1] that in one space dimension, the for-
mal spatial order of accuracy of a FD–FV scheme is one-order high-
er than the designed order of the discrete differential operator that
is used to semi-discretize the equation. In contrast, these two
numbers are typically the same for conventional finite difference
or finite volume methods. To make this point clear, a case study
is provided in Section 3; and this property is formalized in
Theorem 4.3. This superior accuracy property in space makes the
FD–FV operators attractive building blocks towards constructing
efficient solvers for practical hyperbolic problems.

The present work extends this methodology in two aspects.
First, since the construction of the 1D FD–FV operators is based
on Taylor series expansion, these operators are not expected to
perform well when the solutions are discontinuous. Numerical
examples show that when the stencil of the operator exceeds
one cell in either the upwind or the downwind direction, signifi-
cant oscillations appear the shock fronts. To this end, the weighted
essentially nonoscillatory (WENO) strategy is adopted to enhance
the nonlinear stability of high-order 1D FD–FV operators. In partic-
ular, a formally third-order accurate FD–FV operator is constructed
as a convex combination of two third-order upwind or upwind-
biased operators; this WENO-type operator shifts the weight to-
wards the stencil in which the data is smoother, and achieves opti-
mal fourth-order accuracy when the solutions are sufficiently
smooth. Note that the order of the FD–FV scheme is one-order
higher than the operator, thus the optimal order of spatial accuracy
for this WENO-stabilized FD–FV method is fifth-order.

The second part of this work explores the extension of a second-
order FD–FV method to two space dimensions. The discussion,
however, is limited to smooth problems since the main focus is
to investigate the superior accuracy property of the FD–FV frame-
work in multiple space dimensions. In particular, the proposed sec-
ond-order FD–FV methods are constructed using first-order
discrete differential operators, like in the 1D case.

The extension is nontrivial, however, even on structured
meshes due to the following reason. The weak formulation over
one cell gives rise to surface integrals of the flux functions along
the cell boundaries. In 1D, these boundary integrals reduce to
point-wise values that are given by flux functions evaluated using
the nodal dependent variables. In multiple dimensions, however,
these integrals must be approximated numerically, which leads
to multiple choices of the collocation points of nodal variables. This
also brings another issue that higher-order schemes require more
nodal variables on the cell boundaries than low-order schemes.
To simplify these issues, this work focuses on constructing sec-
ond-order FD–FV methods for 2D hyperbolic conservation laws.
In this case, second-order approximation of the cell boundary inte-
gral is sufficient. To this end, two different configurations of the
nodal dependent variables are considered: the first configuration
has nodal values collocated at the grid points; and the second
one chooses nodal variables at edge centers. FD–FV schemes using
both configurations are constructed on both the Cartesian mesh
and the unstructured (triangular) mesh. And the accuracy of these
methods are assessed by solving a number of benchmark smooth
flow problems.

Finally, it is emphasized that the proposed 2D FD–FV schemes
do not guarantee nonlinear stability and they are not suitable for
problems with discontinuities. Thus the methods presented in this
work should be considered as building blocks to construct more
practical solvers with enhanced nonlinear stability, which is left
for future work. This point is further discussed at the end of
Section 5.

The remainder of the paper is organized as follows. Section 2
summarizes the notations used in this work. Then Section 3 pro-
vides a simple case study highlighting the main features of the
1D FD–FV operators, and its numerical performance and computa-

tional cost is compared to those of two simple finite difference
methods. The general 1D FD–FV approach and the fundamental re-
sults concerning its accuracy and linear stability are briefly re-
viewed at the beginning of Section 4. This section also describes
a WENO-type stabilization of the third-order FD–FV operators
and assesses its performance by solving a number of benchmark
flow problems. Section 5 focuses on the 2D extension of a sec-
ond-order FD–FV scheme to both Cartesian grids and triangular
grids, in assumption that the solutions are sufficiently smooth.
Their numerical performances are assessed and compared in Sec-
tion 6. Finally, Section 7 concludes this paper and discusses future
directions.

2. Nomenclature

The following notations are used throughout this paper.

x; y;u; . . . Scalar variables
x;u; f ; . . . Vector-valued variables
yðx; tÞ Exact value of a variable y
�y Cell-averaged value of a variable y
t Time coordinate
x; y Cartesian coordinates
h Reference mesh size in space
k Courant numbers
Dy A typical FD operator applied to y
½Dy� A typical FD–FV operator applied to y

Euler equations
u;v Velocity components
q; p Density and pressure
E Total energy
c Heat capacity ratio

Subscript
i; j Mesh grid points’ indices on Cartesian meshes
i Mesh grid point’s index on triangular meshes
x; y Partial derivatives in space
t Partial derivative in time

Superscript
H Exact counterpart of dependent variable

3. Case study: comparison between a simple FD–FV method and
a simple FD method

The most important features of the FD–FV approach can be
illustrated by solving the scalar advection problem with smooth
solution

ut þ ux ¼ 0; x 2 ½0; 4� ð3:1Þ

with periodic boundary condition and initial data

uðx;0Þ ¼ u0ðxÞ ¼
1þ cosðpxÞ 1 6 x 6 3

0 x < 1; or x > 3

8><
>: ð3:2Þ

The simplest FD–FV method and several FD schemes are de-
tailed and their numerical performances are compared. In particu-
lar, these classical methods include a first-order upwind FD
method and a second-order upwind FD method.

In particular, supposing uniform meshes for simplicity, the clas-
sical first-order upwind FD method has dependent variables
wn

i � uðih; nDtÞ; i ¼ 0; . . . ;N with h ¼ 4=N as illustrated in
Fig. 3.1a. The initial condition is given by

w0
i ¼ u0ðihÞ; i ¼ 0; . . . ;N ð3:3Þ
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