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a b s t r a c t

The present work combines the Spectral Difference method with an artificial viscosity based approach to
enable high-order computation of compressible fluid flows with discontinuities. The study uses an arti-
ficial viscosity approach similar to the high-wavenumber biased artificial viscosity approach (Cook and
Cabot, 2005, 2004; Kawai and Lele, 2008) [1–3], extended to an unstructured grid setup. The model
employs a bulk viscosity for treating shocks, a shear viscosity for treating turbulence, and an artificial
conductivity to handle contact discontinuities. The high-wavenumber biased viscosity is found to stabi-
lize numerical calculations and reduce oscillations near discontinuities. Promising results are demon-
strated for 1D and 2D test problems.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Until recently, compressible flow computations on unstructured
meshes have generally been dominated by schemes restricted to
second order accuracy. However, the need for highly accurate
methods in applications such as large eddy simulation, direct
numerical simulation and computational aeroacoustics, has seen
the development of higher order schemes for unstructured meshes.
In particular, there has been a rise in the popularity and application
of locally discontinuous formulations. Methods such as Discontinu-
ous Galerkin (DG) method [4,5], Spectral Volume (SV) method [6,7]
and Spectral Difference (SD) method [8,9], Lifting Collocation
Penalty (LCP) approach [10], etc. fall under this category.

The SD method is a high-order approach based on the differen-
tial form of the conservative equations. This method combines ele-
ments from Finite-Volume and Finite-Difference techniques and is
particularly attractive because it is conservative, has a simple for-
mulation and straightforward implementation. The absence of vol-
ume or surface integrals also makes this method efficient. The
origins of the SD method can be traced back to 1996, when Kopriva
and Kolias [11] and Kopriva [12] introduced their formulation for
the solution of the 2D compressible Euler equations on unstruc-
tured quadrilateral meshes, which they called the ‘Conservative
Staggered-Grid Chebyshev Multi-Domain method’. Liu et al. [8]
developed a general formulation of this approach on simplex cells

and applied it to wave equations on triangular grids. Wang et al. [9]
extended it to 2D Euler equations on triangular grids. It was further
extended to the 2D N–S equations by May and Jameson [13], and
Wang et al. [14]. Sun et al. [15] further developed it for three-
dimensional Navier–Stokes equations on hexahedral unstructured
meshes. Recently, Jameson [16] obtained a theoretical proof that
the SD method is stable for all orders of accuracy in a Sobolev norm
provided that the interior flux points are located at the zeros of the
corresponding Legendre polynomial. This is valid for the 1D formu-
lation and applies to tensor-product based quadrilateral and hexa-
hedral cells. However, the SD scheme is not stable on simplex
elements. In this regard, Balan et al. [17] proposed an alternate for-
mulation of the SD scheme, featuring a flux interpolation technique
using Raviart–Thomas spaces, which exhibits linear stability for
triangular elements.

One of the greatest challenges with using high-order methods is
their inability to handle flow discontinuities. When flows involve
steep gradients such as shock waves or contact surfaces, non-phys-
ical spurious oscillations arise that contaminate the solution in
smooth regions of the flow often causing the simulations to go
unstable. Higher order approximations are less dissipative than
their low-order counterparts, and hence it is typically necessary
to add explicit dissipation in order to obtain a stable solution.
However this has a negative effect on accuracy in the vicinity of
the discontinuity. It may also degrade the resolution of turbulent
scales due to excessive damping. The development of numerical
algorithms that can capture discontinuities and also resolve the
scales of turbulence in compressible turbulent flows remains a
significant challenge.
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A classical approach to shock capturing is the addition of artifi-
cial viscosity (AV), pioneered by von Neumann and Richtmeyer
[18]. The concept of flexible addition of artificial viscosity/dissipa-
tion has been used very successfully by Jameson et al. [19–22],
thus producing non-oscillatory and sharp resolution of shocks for
structured and unstructured finite volume calculations. Cook and
Cabot proposed such a method for high-order centered differenc-
ing schemes, wherein a spectral-like high-wavenumber biased
artificial viscosity and diffusivity were dynamically added [1,2].
This was followed up with work by Fiorina and Lele [23], on
high-order compact difference schemes, wherein artificial diffusiv-
ity was added in addition to artificial viscosity. Kawai and Lele [3]
extended the method to non-uniform and curvilinear meshes. This
method involves the dynamic addition of grid-dependent localized
transport coefficients such as artificial bulk viscosity, shear viscos-
ity and artificial conductivity where needed. This facilitates the
capturing of discontinuities by smearing the discontinuity over a
numerically resolvable scale. The application of this form of artifi-
cial viscosity (hyperviscosity) has been limited to structured grid
computations.

Other forms of artificial viscosity have been applied to high-or-
der unstructured grid calculations. Persson and Peraire [24] intro-
duced a p-dependent artificial viscosity and demonstrated that
higher-order representations and a piecewise-constant artificial
viscosity can be combined to produce sub-cell shock resolution.
Barter and Darmofal [25] proposed shock-capturing using a combi-
nation of higher-order PDE-based artificial viscosity and enthalpy-
preserving dissipation operator. The above methods were pro-
posed for high-order Discontinuous Galerkin (DG) discretizations.
Nguyen and Peraire [26] proposed an adaptive shock-capturing ap-
proach for the hybridizable DG method. Yang and Wang [27] sug-
gested the use of limiters with SD schemes for shock capturing but
reported issues with convergence when using limiters.

The current study focuses on extending the artificial viscosity
approach proposed by Cook and Cabot [1,2], and modified by Ka-
wai and Lele [3] to computations on unstructured quadrilateral
grids using the Spectral Difference scheme. It must be mentioned
that the present manuscript is an extended version of the work
submitted to the 2009 AIAA CFD Conference [28]. This paper will
discuss the salient aspects of implementing artificial viscosity
within the Spectral Difference setup. The applicability and limita-
tions of this approach will be demonstrated with test cases in 1D
and 2D. The current implementation of artificial viscosity can also
be extended to the 3D Spectral Difference scheme.

In Section 2, we look at the formulation of the SD method on
unstructured quadrilateral meshes. Section 3 discusses the details
of the artificial viscosity method used. In Section 4, we look at the
numerical results obtained from the application of the artificial vis-
cosity method to multiple test cases. Section 5 discusses the con-
clusions of our study and the direction of future efforts.

2. Formulation of 2D Spectral Difference scheme on
quadrilateral meshes

The formulation of the equations for the 2D SD scheme on
quadrilateral meshes is similar to the formulation of Sun et al.
[15] for unstructured hexahedral grids.

Consider the unsteady compressible 2D Navier Stokes equations
in conservative form

@Q
@t
þ @F
@x
þ @G
@y
¼ 0 ð1Þ

where Q is the vector of conserved variables; F and G are the total
flux vectors in the x and y direction respectively. F and G can be split
into inviscid and viscous parts, F ¼ Fi þ Fv and G ¼ Gi þ Gv .

The conservative variables and the inviscid components of the
fluxes are given by,
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where q is the density of the fluid, u and v are the cartesian velocity
components of the flow, p is the pressure, and E is the specific total
energy.

The viscous flux vectors can be written as
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where the s’s are components of the shear stress tensor, and j is the
thermal conductivity of the fluid. The shear stress tensor is related
to the velocity gradients as given below.
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� �
where l is the dynamic (shear) viscosity coefficient, and b is the
bulk viscosity coefficient. The latter is related to the viscous
stress caused by a volume change. However, under the Stokes’
hypothesis, the bulk viscosity is related to the dynamic viscosity
as b ¼ �ð2=3Þl, and the trace of the shear stress tensor vanishes.

To achieve an efficient implementation, all elements in the
physical domain ðx; yÞ are transformed into a standard square ele-
ment, 0 < n < 1; 0 < g < 1. The transformation can be written as:

x

y

� �
¼
XK

i¼1

Mi n;gð Þ
xi

yi

� �
ð5Þ

where K is the number of points used to define the physical ele-
ment, ðxi; yiÞ are the cartesian coordinates at those points, and
Mi n;gð Þ are the shape functions. The metrics and the Jacobian of
the transformation can be computed for the standard element.
The governing equations in the physical domain are then trans-
ferred into the computational domain, and the transformed equa-
tions take the following form:
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where eQ ¼ jJj � Q andeFeG
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In the standard element, two sets of points are defined, namely
the solution points and the flux points, illustrated in Fig. 1. In order
to construct a degree (N � 1) polynomial in each coordinate direc-
tion, the solution at N points are required. The solution points in 1D
are chosen to be the Gauss points defined by:
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