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a b s t r a c t

This paper presents a shock capturing technique for a staggered grid discontinuous spectral element
method (DSEM), which adds localized and smooth artificial viscosity to systems of nonlinear conserva-
tion laws. The artificial diffusivity model used in this work is a modified form of the entropy viscosity
(EV) presented by Guermond et al. (2011). We extend the application of this method to high-order
discontinuous schemes for the simulation of high speed flows with discontinuities on staggered grids.
Direct implementation of the entropy viscosity method in DSEM leads to a non-smooth artificial viscos-
ity, which in turn leads to oscillations and instability of the solution. To smoothen the artificial viscosity,
the EV method is coupled with a spectral filter and an interface treatment technique. The resulting
artificial viscosity is locally large near discontinuities and transitions smoothly to zero in smooth flow
regions. The method enables using elements with orders higher than unity while avoiding adaptive mesh
refinement and preserving the locality and compactness of the discontinuous Galerkin (DG) scheme. The
method is implemented for the inviscid compressible Euler equations in two space dimensions and its
effectiveness is demonstrated through its application to a series of benchmark problems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade, discontinuous Galerkin (DG) methods have
increasingly become a viable alternative in the field of computa-
tional fluid dynamics (CFD). DG methods are a promising candidate
to find high-fidelity solutions to the Euler equations that govern
the gas dynamics in complex geometries. DG combins the proper-
ties of high-order discretization of the Galerkin finite element
method and the local conservation typical of the finite volume
method. Furthermore, the discretization offers advantages in terms
of local mesh adaptation and efficient parallelization [1–9].

The staggered grid discontinuous spectral element method
(DSEM) [1–3] is a notable member of the family of higher order
methods. DSEM approximates the solution variables of conserva-
tion laws through a high-order local basis function in non-overlap-
ping elements that may be oriented arbitrarily within an
unstructured grid. The local, non-overlapping nature of the ele-
ments not only enables meshing of flow geometries of any complex-
ity, it also ensures a high parallel efficiency and easy boundary
condition implementation. DSEM has very small diffusion and

dispersion errors and is spectrally convergent if the solution is
smooth [1,2]. However, the implementation of DSEM for flows with
discontinuities, such as supersonic flows, has proven quite challeng-
ing. Specifically, higher order approximations of discontinuous
shock solutions that appear if the flow is supersonic, are troubled
by Gibbs oscillations [4]. In this paper we focus on the application
of DSEM to capture discontinuities in supersonic flows.

There has been an abundance of work on the extension of clas-
sical shock-capturing methodologies to high-order methods over
the past two decades. They can be broadly categorized as the use
of limiters [10], the weighting of stencils such as essentially non-
oscillatory (ENO) and weighted essentially non-oscillatory (WENO)
schemes [11,12] and the addition of artificial viscosity in the vicin-
ity of shocks. Each of these methods is based on the smoothing of
the solution local to the shock with the objective to essentially or
entirely removing Gibbs oscillations.

Despite their indisputable success, the use of limiters in high-
order DSEM approximations is challenging. Moreover, the use of
limiters tends to drastically reduce the accuracy in a wide region
near the shock.

Similarly, the extension of non-oscillatory numerical algorithms
to complex geometries is complicated [13–15]. These methods
reconstruct high-order approximations of the solution away from
the discontinuities while resolving sharp profiles using additional
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degrees of freedom (DOF). However, they usually require carefully
chosen reconstruction and numerical fluxes and their computa-
tional overhead for high-order approximations is high. Extension
to multiple dimensions is limited to structured meshes.

Another approach to stabilize high-order numerical schemes is
by adding diffusion to remove non-physical oscillations near
shocks. Although this enables the capturing of the shocks and dis-
continuities, the diffusion near the sharp discontinuities may easily
be excessive and tends to grow over time. Moreover, since viscosity
is applied over the entire domain, one may lose the benefit of high
order resolution. A method capable of adding viscosity which is
localized in regions of shock, limited at contact discontinuities
and virtually zero in smooth regions is desirable.

Von Neumann and Richtmyer [16] introduced the idea of a non-
linear artificial viscosity. This concept was adopted later by Bald-
win and MacCormack [17] to simulate the interaction of shock
waves with turbulent boundary layer. Later Jameson et al. [18]
used this approach in the context of finite volume in combination
with a Runge–Kutta time stepping scheme to simulate compress-
ible flows in complex geometries. Adding artificial viscosity has
long been the preferred method of shock capturing in the context
of streamwise upwind Petrov–Galerkin (SUPG) finite element
methods, as proposed by Hughes et al. [19]. Researchers such as
Hartmann [20] and Aliabadi et al. [21] have used artificial viscosity
for shock capturing with DG, albeit only for polynomial order P ¼ 1
solutions. Although this method, and other similar methods, are
capable of adding the required amount of viscosity near shocks
to spread the discontinuity and also control the numerical oscilla-
tions behind the shock wave, they can in turn overly diffuse the
waves and produce incorrect wave speeds.

There have been other attempts to particularly design algo-
rithms to add artificial viscosity to high-order discontinuous Galer-
kin methods. Persson and Peraire [22] introduced a polynomial
order dependent artificial viscosity to produce sub-cell shock reso-
lution for discontinuous Galerkin schemes. To locate the shocks in
the flow field, Persson and Peraire developed a sensor based on the
magnitude of the highest-order coefficients in an orthonormal rep-
resentation of the solution. Later, Barter and Darmofal [23] used a
reaction–diffusion equation to obtain a viscosity that is smooth in
both time and space. Reinser et al. [24] used a similar reaction–dif-
fusion equation in combination with the gradient based classical
artificial viscosity to achieve a space–time smooth viscosity. Unfor-
tunately, to achieve sufficient smoothing of the viscosity, one
needs to choose a large diffusivity coefficient, which results in a
stiff system of ODEs for time integration. The resulting time step
restriction can be handled through implicit time integration. Impli-
cit time stepping, however, not only is more laborious to imple-
ment, it also is more expensive per time step, and less parallel
efficient for parallel computing.

Recently, Guermond et al. [25] proposed an artificial viscosity
method for spectral methods, based on the local rate of entropy
generation. In this method, the magnitude of the artificial viscos-
ity is coupled to the magnitude of entropy generation. Since
shocks generate entropy, the magnitude of entropy generation
not only identifies the shock, but also is an excellent measure
for the magnitude of the artificial viscosity. Hence, the addition
of a numerical dissipation term proportional to the local entropy
production rate contributes a numerical dissipation to the shock
regions and hence removing Gibbs oscillations, while virtually
no dissipation is added in the regions far from the shock to ensure
an accurate computation of small-scale, turbulent flow away from
shocks. In [25] the EV method was shown to be stable and accu-
rate in combination with a continuous spectral element method.
Zingan et al. [26] extended the use of EV to discontinuous finite
element method, which is limited to the use of relatively low-or-
der elements.

This work explores the feasibility of the entropy viscosity meth-
od within the framework of staggered grid DSEM. The standard en-
tropy viscosity model was not designed for implementation in
conjunction with a discontinuous collocation method. Specifically,
element-to-element jumps in artificial viscosity leads to oscilla-
tions in solution gradients which can corrupt the smoothness
and accuracy of the downstream flow field. We develop a smoother
artificial viscosity by employing an elemental level filter and an
interface treatment technique that results in a space–time smooth
artificial viscosity. This artificially added coefficient is large and
localized near discontinuities and transitions smoothly to zero in
smooth flow regions. The method works in conjunction with
high-order elements, avoiding adaptive mesh refinement, and pre-
serves the locality and compactness of the DG scheme.

In Section 2, we briefly review the DSEM formulation and
methodology. In Section 3, the implementation of EV in DSEM is
explained. Section 4 explores the performance of DSEM-EV in
dynamically capturing the discontinuous solution in one-dimen-
sional and two-dimensional compressible flows. The final section
is reserved for conclusions and recommendations for future work.

2. Formulation and methodology

Here, we briefly summarize the governing conservation laws
and the collocated, staggered-grid DSEM formulation. For a de-
tailed description of the DSEM and its computation for smooth
flows in complex geometries, we refer to papers by Kopriva [1,2],
Black [27] and Jacobs et al. [28].

2.1. Governing equations

For a compressible and Newtonian fluid that is assumed to obey
the ideal gas equation of state, the compressible Navier–Stokes
equations are given by

@q
@t
þr � ðquÞ ¼ 0 ð1Þ

@qu
@t
þr � ðquuþ pdÞ � r � s ¼ 0 ð2Þ

@qe
@t
þr � ðqeuþ pd � uÞ � r � ðs � uþ jrTÞ ¼ 0 ð3Þ

where q is the density; u is the velocity vector; p is the static pres-
sure; e is the internal energy; T is the temperature; j is the thermal
conductivity and d is the Kronecker tensor. The viscous stress tensor
is

s ¼ lð2SÞ þ b� 2
3
l

� �
ðr � uÞd ð4Þ

where l is the dynamic viscosity; b is the bulk viscosity and S is the
strain rate tensor,

S ¼ 1
2
½ruþ ðruÞT � ð5Þ

In this work the physical bulk viscosity of the fluid is taken to be
zero following the Stokes hypothesis.

The governing equations can be non-dimensionalized with
reference variables, and lead to the following non-dimensional
Reynolds number, Ref , Prandtl number, Prf , and Mach number,
Mf as

Ref ¼ Uf Lf qf =l; Prf ¼ cpl=j; Mf ¼ Uf =
ffiffiffiffiffiffiffiffiffiffi
cRTf

q
where subscript f denotes the reference scale; cp is the constant-
pressure specific heat; R is the gas constant and c is the ratio of spe-
cific heats. Using these parameters, and assuming constant fluid
properties, the non-dimensional form of Eqs. 1, 1 and 3 reads,
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